# Multiply the given number by 2 such that it is divisible by 10

Given a number, the only operation allowed is to multiply the number by 2. Calculate the minimum number of operations to make the number divisible by 10.

NOTE: If it is not possible to convert then print -1.

Examples:

Input: 10
Output: 0
As the given number is itself divisible by 10,

Input: 1
Output: -1
As by multiplying with 2, given no. can’t be
converted into a number that is divisible by 10,

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: Any given number is divisible by 10 only if the last digit of the number is 0. For this problem, extract the last digit of the input number and check it in the following ways :
1) If the last digit is 0 then it is already divisible by 10 , so the minimum number of steps is 0.

2) If the last digit is 5 then multiplying it by 2 one time will make it divisible by 10, so the minimum number of steps is 1.

3) If the last digit is an even or odd number (apart from 0 and 5) then multiplying it by 2 any number of times will only produce even number so we can never make it divisible by 10. Therefore the number of steps is -1.

## C++

 // C++ code for finding  // number of operations #include using namespace std;    int multiplyBy2(int n) {     int rem, value;        // Find the last digit or remainder     rem = n % 10;     switch (rem) {        // If the last digit is 0     case 0:         value = 0;         break;        // If the last digit is 5     case 5:         value = 1;         break;        // If last digit is other      // than 0 and 5.      default:         value = -1;     }        return value; }    // Driver code int main() {        int n = 28;     cout << multiplyBy2(n) << endl;        n = 255;     cout << multiplyBy2(n) << endl;      return 0; }

## Java

 // JAVA code for finding  // number of operations import java.io.*;    class GFG {     static int multiplyBy2(int n) {     int rem, value;        // Find the last digit     // or remainder     rem = n % 10;     switch (rem)      {        // If the last digit is 0     case 0:         value = 0;         break;        // If the last digit is 5     case 5:         value = 1;         break;        // If last digit is other      // than 0 and 5.      default:         value = -1;     }        return value; }    // Driver code public static void main (String[] args)  {     int n = 28;     System.out.println(multiplyBy2(n));        n = 255;     System.out.println(multiplyBy2(n)); } }    // This code is contributed // by shiv_bhakt.

## Python3

 # Python3 code for finding number  # of operations def dig(argu):      switcher = {          0: 0,          5: 1,      }      return switcher.get(argu, -1)        def multiplyBy2(n):        # Find the last digit or remainder     rem = n % 10;     return dig(rem);    # Driver code n = 28; print(multiplyBy2(n));    n = 255; print(multiplyBy2(n));            # This code is contributed by mits

## C#

 // C# code for finding  // number of operations using System;    class GFG {     static int multiplyBy2(int n)     {     int rem, value;        // Find the last digit     // or remainder     rem = n % 10;     switch (rem)      {        // If the last     // digit is 0     case 0:         value = 0;         break;        // If the last      // digit is 5     case 5:         value = 1;         break;        // If last digit is      // other than 0 and 5.      default:         value = -1;         break;     }        return value; }    // Driver code public static void Main ()  {     int n = 28;     Console.WriteLine(multiplyBy2(n));        n = 255;     Console.WriteLine(multiplyBy2(n)); } }    // This code is contributed // by shiv_bhakt.

## PHP



Output:

-1
1

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.