Multiply perfect number

A number N is said to be Multiply-perfect numbers if N divides sigma(N), where sigma(N) = sum of all divisors of N.

The first few Multiply-perfect numbers are:

1, 6, 28, 120, 496, 672, ……..

Check if N is a Multiply-perfect number

Given a number N, the task is to find if this number is Multiply-perfect number or not.

Examples:



Input: N = 120
Output: YES
Explanation:
Sum of 120’s divisors is 1 + 2 + 3 + 4 + 5 + 6 + 8 + 10 + 12 + 15 + 20 + 24 + 30 + 40 + 60 + 120 = 360 and 120 divides 360.
Therefore, 120 is a Multiply-perfect number.

Input: N = 32
Output: No

Approach: For a number N to be Multiply-perfect number, the following condition should hold true: sigma(N) % N = 0, where sigma(N) = sum of all divisors of N. Therefore, we will find sum of all divisors of N and check if it is divisible by N or not. If divisible print “Yes” else print “No.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the above approach
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the
// sum of divisors
int getSum(int n)
{
    int sum = 0;
  
    // Note that this loop
    // runs till square root of N
    for (int i = 1; i <= sqrt(n); i++) {
        if (n % i == 0) {
  
            // If divisors are equal,
            // take only one of them
            if (n / i == i)
                sum = sum + i;
  
            // Otherwise take both
            else {
                sum = sum + i;
                sum = sum + (n / i);
            }
        }
    }
  
    return sum;
}
  
// Function to check Multiply-perfect number
bool MultiplyPerfectNumber(int n)
{
    if (getSum(n) % n == 0)
        return true;
    else
        return false;
}
  
// Driver code
int main()
{
  
    int n = 28;
    if (MultiplyPerfectNumber(n)) {
        cout << "Yes";
    }
    else {
        cout << "No";
    }
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach
class GFG{
      
// Function to find the
// sum of divisors
static int getSum(int n)
{
    int sum = 0;
  
    // Note that this loop
    // runs till square root of N
    for(int i = 1; i <= Math.sqrt(n); i++) 
    {
       if (n % i == 0)
       {
             
           // If divisors are equal,
           // take only one of them
           if (n / i == i)
               sum = sum + i;
             
           // Otherwise take both
           else
           {
               sum = sum + i;
               sum = sum + (n / i);
           }
       }
    }
    return sum;
}
  
// Function to check Multiply-perfect number
static boolean MultiplyPerfectNumber(int n)
{
    if (getSum(n) % n == 0)
        return true;
    else
        return false;
}
  
// Driver code
public static void main(String[] args)
{
    int n = 28;
      
    if (MultiplyPerfectNumber(n))
    {
        System.out.print("Yes");
    }
    else 
    {
        System.out.print("No");
    }
}
}
  
// This code is contributed by Ritik Bansal

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the above approach
import math
  
# Function to find the
# sum of divisors
def getSum(n):
  
    sum1 = 0;
  
    # Note that this loop
    # runs till square root of N
    for i in range(1, int(math.sqrt(n))):
        if (n % i == 0):
  
            # If divisors are equal,
            # take only one of them
            if (n // i == i):
                sum1 = sum1 + i;
  
            # Otherwise take both
            else:
                sum1 = sum1 + i;
                sum1 = sum1 + (n // i);
              
    return sum1;
  
# Function to check Multiply-perfect number
def MultiplyPerfectNumber(n):
  
    if (getSum(n) % n == 0):
        return True;
    else:
        return False;
  
# Driver code
n = 28;
if (MultiplyPerfectNumber(n)):
    print("Yes");
else:
    print("No");
  
# This code is contributed by Code_Mech

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach
using System;
class GFG{
      
// Function to find the
// sum of divisors
static int getSum(int n)
{
    int sum = 0;
  
    // Note that this loop
    // runs till square root of N
    for(int i = 1; i <= Math.Sqrt(n); i++) 
    {
       if (n % i == 0)
       {
             
           // If divisors are equal,
           // take only one of them
           if (n / i == i)
               sum = sum + i;
             
           // Otherwise take both
           else
           {
               sum = sum + i;
               sum = sum + (n / i);
           }
       }
    }
    return sum;
}
  
// Function to check Multiply-perfect number
static bool MultiplyPerfectNumber(int n)
{
    if (getSum(n) % n == 0)
        return true;
    else
        return false;
}
  
// Driver code
public static void Main()
{
    int n = 28;
      
    if (MultiplyPerfectNumber(n))
    {
        Console.Write("Yes");
    }
    else
    {
        Console.Write("No");
    }
}
}
  
// This code is contributed by Code_Mech

chevron_right


Output:

Yes

References: https://en.wikipedia.org/wiki/Multiply_perfect_number

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : btc_148, Code_Mech