Given a integer N, the task is to multiply the number with 15 without using multiplication * and division / operators.
Examples:
Input: N = 10
Output: 150
Input: N = 7
Output: 105
Method 1: We can multiply integer N by 15 using bitwise operators. First left shift the number by 4 bits which is equal to (16 * N) then subtract the original number N from the shifted number i.e. ((16 * N) – N) which is equal to 15 * N.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
long multiplyByFifteen( long n)
{
long prod = (n << 4);
prod = prod - n;
return prod;
}
int main()
{
long n = 7;
cout << multiplyByFifteen(n);
return 0;
}
|
Java
class GFG {
static long multiplyByFifteen( long n)
{
long prod = (n << 4 );
prod = prod - n;
return prod;
}
public static void main(String[] args)
{
long n = 7 ;
System.out.print(multiplyByFifteen(n));
}
}
|
Python3
def multiplyByFifteen(n):
prod = (n << 4 )
prod = prod - n
return prod
n = 7
print (multiplyByFifteen(n))
|
C#
using System;
class GFG {
static long multiplyByFifteen( long n)
{
long prod = (n << 4);
prod = prod - n;
return prod;
}
public static void Main()
{
long n = 7;
Console.Write(multiplyByFifteen(n));
}
}
|
PHP
<?php
function multiplyByFifteen( $n )
{
$prod = ( $n << 4);
$prod = $prod - $n ;
return $prod ;
}
$n = 7;
echo multiplyByFifteen( $n );
?>
|
Javascript
<script>
function multiplyByFifteen(n)
{
let prod = (n << 4);
prod = prod - n;
return prod;
}
let n = 7;
document.write(multiplyByFifteen(n));
</script>
|
Time Complexity: O(1)
Auxiliary Space: O(1)
Method 2: We can also calculate the multiplication (15 * N) as sum of (8 * N) + (4 * N) + (2 * N) + N which can be obtained by performing left shift operations as (8 * N) = (N << 3), (4 * N) = (n << 2) and (2 * N) = (n << 1).
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
long multiplyByFifteen( long n)
{
long prod = (n << 3);
prod += (n << 2);
prod += (n << 1);
prod += n;
return prod;
}
int main()
{
long n = 7;
cout << multiplyByFifteen(n);
return 0;
}
|
Java
class GFG {
static long multiplyByFifteen( long n)
{
long prod = (n << 3 );
prod += (n << 2 );
prod += (n << 1 );
prod += n;
return prod;
}
public static void main(String[] args)
{
long n = 7 ;
System.out.print(multiplyByFifteen(n));
}
}
|
Python3
def multiplyByFifteen(n):
prod = (n << 3 )
prod + = (n << 2 )
prod + = (n << 1 )
prod + = n
return prod
n = 7
print (multiplyByFifteen(n))
|
C#
using System;
class GFG {
static long multiplyByFifteen( long n)
{
long prod = (n << 3);
prod += (n << 2);
prod += (n << 1);
prod += n;
return prod;
}
public static void Main()
{
long n = 7;
Console.Write(multiplyByFifteen(n));
}
}
|
Javascript
<script>
function multiplyByFifteen(n)
{
var prod = (n << 3);
prod += (n << 2);
prod += (n << 1);
prod += n;
return prod;
}
var n = 7;
document.write(multiplyByFifteen(n));
</script>
|
Time Complexity: O(1)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
30 Nov, 2022
Like Article
Save Article