In number theory, given an integer A and a positive integer N with gcd( A , N) = 1, the multiplicative order of a modulo N is the smallest positive integer k with A^k( mod N ) = 1. ( 0 < K < N )
Examples :
Input : A = 4 , N = 7 Output : 3 explanation : GCD(4, 7) = 1 A^k( mod N ) = 1 ( smallest positive integer K ) 4^1 = 4(mod 7) = 4 4^2 = 16(mod 7) = 2 4^3 = 64(mod 7) = 1 4^4 = 256(mod 7) = 4 4^5 = 1024(mod 7) = 2 4^6 = 4096(mod 7) = 1 smallest positive integer K = 3 Input : A = 3 , N = 1000 Output : 100 (3^100 (mod 1000) == 1) Input : A = 4 , N = 11 Output : 5
IF we take a close look then we observe that we do not need to calculate power every time. we can be obtaining next power by multiplying ‘A’ with the previous result of a module .
Explanation : A = 4 , N = 11 initially result = 1 with normal with modular arithmetic (A * result) 4^1 = 4 (mod 11 ) = 4 || 4 * 1 = 4 (mod 11 ) = 4 [ result = 4] 4^2 = 16(mod 11 ) = 5 || 4 * 4 = 16(mod 11 ) = 5 [ result = 5] 4^3 = 64(mod 11 ) = 9 || 4 * 5 = 20(mod 11 ) = 9 [ result = 9] 4^4 = 256(mod 11 )= 3 || 4 * 9 = 36(mod 11 ) = 3 [ result = 3] 4^5 = 1024(mod 5 ) = 1 || 4 * 3 = 12(mod 11 ) = 1 [ result = 1] smallest positive integer 5
Run a loop from 1 to N-1 and Return the smallest +ve power of A under modulo n which is equal to 1.
Below is the implementation of above idea.
CPP
// C++ program to implement multiplicative order #include<bits/stdc++.h> using namespace std; // function for GCD int GCD ( int a , int b ) { if (b == 0 ) return a; return GCD( b , a%b ) ; } // Fucnction return smallest +ve integer that // holds condition A^k(mod N ) = 1 int multiplicativeOrder( int A, int N) { if (GCD(A, N ) != 1) return -1; // result store power of A that rised to // the power N-1 unsigned int result = 1; int K = 1 ; while (K < N) { // modular arithmetic result = (result * A) % N ; // return samllest +ve integer if (result == 1) return K; // increment power K++; } return -1 ; } //driver program to test above function int main() { int A = 4 , N = 7; cout << multiplicativeOrder(A, N); return 0; } |
Java
// Java program to implement multiplicative order import java.io.*; class GFG { // function for GCD static int GCD( int a, int b) { if (b == 0 ) return a; return GCD(b, a % b); } // Function return smallest +ve integer that // holds condition A^k(mod N ) = 1 static int multiplicativeOrder( int A, int N) { if (GCD(A, N) != 1 ) return - 1 ; // result store power of A that rised to // the power N-1 int result = 1 ; int K = 1 ; while (K < N) { // modular arithmetic result = (result * A) % N; // return samllest +ve integer if (result == 1 ) return K; // increment power K++; } return - 1 ; } // driver program to test above function public static void main(String args[]) { int A = 4 , N = 7 ; System.out.println(multiplicativeOrder(A, N)); } } /* This code is contributed by Nikita Tiwari.*/ |
Python3
# Python 3 program to implement # multiplicative order # funnction for GCD def GCD (a, b ) : if (b = = 0 ) : return a return GCD( b, a % b ) # Fucnction return smallest + ve # integer that holds condition # A ^ k(mod N ) = 1 def multiplicativeOrder(A, N) : if (GCD(A, N ) ! = 1 ) : return - 1 # result store power of A that rised # to the power N-1 result = 1 K = 1 while (K < N) : # modular arithmetic result = (result * A) % N # return samllest + ve integer if (result = = 1 ) : return K # increment power K = K + 1 return - 1 # Driver program A = 4 N = 7 print (multiplicativeOrder(A, N)) # This code is contributed by Nikita Tiwari. |
C#
// C# program to implement multiplicative order using System; class GFG { // function for GCD static int GCD( int a, int b) { if (b == 0) return a; return GCD(b, a % b); } // Function return smallest +ve integer // that holds condition A^k(mod N ) = 1 static int multiplicativeOrder( int A, int N) { if (GCD(A, N) != 1) return -1; // result store power of A that // rised to the power N-1 int result = 1; int K = 1; while (K < N) { // modular arithmetic result = (result * A) % N; // return samllest +ve integer if (result == 1) return K; // increment power K++; } return -1; } // Driver Code public static void Main() { int A = 4, N = 7; Console.Write(multiplicativeOrder(A, N)); } } // This code is contributed by Nitin Mittal. |
PHP
<?php // PHP program to implement // multiplicative order // function for GCD function GCD ( $a , $b ) { if ( $b == 0 ) return $a ; return GCD( $b , $a % $b ) ; } // Fucnction return smallest // +ve integer that holds // condition A^k(mod N ) = 1 function multiplicativeOrder( $A , $N ) { if (GCD( $A , $N ) != 1) return -1; // result store power of A // that rised to the power N-1 $result = 1; $K = 1 ; while ( $K < $N ) { // modular arithmetic $result = ( $result * $A ) % $N ; // return samllest +ve integer if ( $result == 1) return $K ; // increment power $K ++; } return -1 ; } // Driver Code $A = 4; $N = 7; echo (multiplicativeOrder( $A , $N )); // This code is contributed by Ajit. ?> |
Output :
3
Time Complexity: O(N)
Reference : https://en.wikipedia.org/wiki/Multiplicative_order
This article is contributed by Nishant Singh . If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.