Given two integers ‘a’ and ‘m’, find modular multiplicative inverse of ‘a’ under modulo ‘m’.
The modular multiplicative inverse is an integer ‘x’ such that.
a x ≅ 1 (mod m)
The value of x should be in { 1, 2, … m-1}, i.e., in the range of integer modulo m. ( Note that x cannot be 0 as a*0 mod m will never be 1 )
The multiplicative inverse of “a modulo m” exists if and only if a and m are relatively prime (i.e., if gcd(a, m) = 1).
Examples:
Input: a = 3, m = 11 Output: 4 Since (4*3) mod 11 = 1, 4 is modulo inverse of 3(under 11). One might think, 15 also as a valid output as "(15*3) mod 11" is also 1, but 15 is not in ring {1, 2, ... 10}, so not valid. Input: a = 10, m = 17 Output: 12 Since (10*12) mod 17 = 1, 12 is modulo inverse of 10(under 17).
Method 1 (Naive)
A Naive method is to try all numbers from 1 to m. For every number x, check if (a*x)%m is 1.
Below is the implementation of this method.
C++
// C++ program to find modular // inverse of a under modulo m #include <iostream> using namespace std; // A naive method to find modular // multiplicative inverse of 'a' // under modulo 'm' int modInverse( int a, int m) { for ( int x = 1; x < m; x++) if (((a%m) * (x%m)) % m == 1) return x; } // Driver code int main() { int a = 3, m = 11; // Function call cout << modInverse(a, m); return 0; } |
Java
// Java program to find modular inverse // of a under modulo m import java.io.*; class GFG { // A naive method to find modulor // multiplicative inverse of 'a' // under modulo 'm' static int modInverse( int a, int m) { for ( int x = 1 ; x < m; x++) if (((a%m) * (x%m)) % m == 1 ) return x; return 1 ; } // Driver Code public static void main(String args[]) { int a = 3 , m = 11 ; // Function call System.out.println(modInverse(a, m)); } } /*This code is contributed by Nikita Tiwari.*/ |
Python3
# Python3 program to find modular # inverse of a under modulo m # A naive method to find modulor # multiplicative inverse of 'a' # under modulo 'm' def modInverse(a, m): for x in range ( 1 , m): if (((a % m) * (x % m)) % m = = 1 ): return x return - 1 # Driver Code a = 3 m = 11 # Function call print (modInverse(a, m)) # This code is contributed by Nikita Tiwari. |
C#
// C# program to find modular inverse // of a under modulo m using System; class GFG { // A naive method to find modulor // multiplicative inverse of 'a' // under modulo 'm' static int modInverse( int a, int m) { for ( int x = 1; x < m; x++) if (((a%m) * (x%m)) % m == 1) return x; return 1; } // Driver Code public static void Main() { int a = 3, m = 11; // Function call Console.WriteLine(modInverse(a, m)); } } // This code is contributed by anuj_67. |
PHP
<≅php // PHP program to find modular // inverse of a under modulo m // A naive method to find modulor // multiplicative inverse of // 'a' under modulo 'm' function modInverse( $a , $m ) { for ( $x = 1; $x < $m ; $x ++) if ((( $a % $m ) * ( $x % $m )) % $m == 1) return $x ; } // Driver Code $a = 3; $m = 11; // Function call echo modInverse( $a , $m ); // This code is contributed by anuj_67. ≅> |
Javascript
<script> // Javascirpt program to find modular // inverse of a under modulo m // A naive method to find modulor // multiplicative inverse of // 'a' under modulo 'm' function modInverse(a, m) { for (let x = 1; x < m; x++) if (((a % m) * (x % m)) % m == 1) return x; } // Driver Code let a = 3; let m = 11; // Function call document.write(modInverse(a, m)); // This code is contributed by _saurabh_jaiswal. </script> |
4
Time Complexity: O(m).
Method 2 (Works when m and a are coprime)
The idea is to use Extended Euclidean algorithms that takes two integers ‘a’ and ‘b’, finds their gcd and also find ‘x’ and ‘y’ such that
ax + by = gcd(a, b)
To find multiplicative inverse of ‘a’ under ‘m’, we put b = m in above formula. Since we know that a and m are relatively prime, we can put value of gcd as 1.
ax + my = 1
If we take modulo m on both sides, we get
ax + my ≅ 1 (mod m)
We can remove the second term on left side as ‘my (mod m)’ would always be 0 for an integer y.
ax ≅ 1 (mod m)
So the ‘x’ that we can find using Extended Euclid Algorithm is the multiplicative inverse of ‘a’
Below is the implementation of the above algorithm.
C
// C program to find multiplicative modulo inverse using // Extended Euclid algorithm. #include <stdio.h> // C function for extended Euclidean Algorithm int gcdExtended( int a, int b, int * x, int * y); // Function to find modulo inverse of a void modInverse( int a, int m) { int x, y; int g = gcdExtended(a, m, &x, &y); if (g != 1) printf ( "Inverse doesn't exist" ); else { // m is added to handle negative x int res = (x % m + m) % m; printf ( "Modular multiplicative inverse is %d" , res); } } // C function for extended Euclidean Algorithm int gcdExtended( int a, int b, int * x, int * y) { // Base Case if (a == 0) { *x = 0, *y = 1; return b; } int x1, y1; // To store results of recursive call int gcd = gcdExtended(b % a, a, &x1, &y1); // Update x and y using results of recursive // call *x = y1 - (b / a) * x1; *y = x1; return gcd; } // Driver Code int main() { int a = 3, m = 11; // Function call modInverse(a, m); return 0; } |
PHP
<≅php // PHP program to find multiplicative modulo // inverse using Extended Euclid algorithm. // Function to find modulo inverse of a function modInverse( $a , $m ) { $x = 0; $y = 0; $g = gcdExtended( $a , $m , $x , $y ); if ( $g != 1) echo "Inverse doesn't exist" ; else { // m is added to handle negative x $res = ( $x % $m + $m ) % $m ; echo "Modular multiplicative " . "inverse is " . $res ; } } // function for extended Euclidean Algorithm function gcdExtended( $a , $b , & $x , & $y ) { // Base Case if ( $a == 0) { $x = 0; $y = 1; return $b ; } $x1 ; $y1 ; // To store results of recursive call $gcd = gcdExtended( $b % $a , $a , $x1 , $y1 ); // Update x and y using results of // recursive call $x = $y1 - (int)( $b / $a ) * $x1 ; $y = $x1 ; return $gcd ; } // Driver Code $a = 3; $m = 11; // Function call modInverse( $a , $m ); // This code is contributed by chandan_jnu ≅> |
Modular multiplicative inverse is 4
Iterative Implementation:
C++
// Iterative C++ program to find modular // inverse using extended Euclid algorithm #include <stdio.h> // Returns modulo inverse of a with respect // to m using extended Euclid Algorithm // Assumption: a and m are coprimes, i.e., // gcd(a, m) = 1 int modInverse( int a, int m) { int m0 = m; int y = 0, x = 1; if (m == 1) return 0; while (a > 1) { // q is quotient int q = a / m; int t = m; // m is remainder now, process same as // Euclid's algo m = a % m, a = t; t = y; // Update y and x y = x - q * y; x = t; } // Make x positive if (x < 0) x += m0; return x; } // Driver Code int main() { int a = 3, m = 11; // Function call printf ( "Modular multiplicative inverse is %d\n" , modInverse(a, m)); return 0; } |
Java
// Iterative Java program to find modular // inverse using extended Euclid algorithm class GFG { // Returns modulo inverse of a with // respect to m using extended Euclid // Algorithm Assumption: a and m are // coprimes, i.e., gcd(a, m) = 1 static int modInverse( int a, int m) { int m0 = m; int y = 0 , x = 1 ; if (m == 1 ) return 0 ; while (a > 1 ) { // q is quotient int q = a / m; int t = m; // m is remainder now, process // same as Euclid's algo m = a % m; a = t; t = y; // Update x and y y = x - q * y; x = t; } // Make x positive if (x < 0 ) x += m0; return x; } // Driver code public static void main(String args[]) { int a = 3 , m = 11 ; // Function call System.out.println( "Modular multiplicative " + "inverse is " + modInverse(a, m)); } } /*This code is contributed by Nikita Tiwari.*/ |
Python3
# Iterative Python 3 program to find # modular inverse using extended # Euclid algorithm # Returns modulo inverse of a with # respect to m using extended Euclid # Algorithm Assumption: a and m are # coprimes, i.e., gcd(a, m) = 1 def modInverse(a, m): m0 = m y = 0 x = 1 if (m = = 1 ): return 0 while (a > 1 ): # q is quotient q = a / / m t = m # m is remainder now, process # same as Euclid's algo m = a % m a = t t = y # Update x and y y = x - q * y x = t # Make x positive if (x < 0 ): x = x + m0 return x # Driver code a = 3 m = 11 # Function call print ( "Modular multiplicative inverse is" , modInverse(a, m)) # This code is contributed by Nikita tiwari. |
C#
// Iterative C# program to find modular // inverse using extended Euclid algorithm using System; class GFG { // Returns modulo inverse of a with // respect to m using extended Euclid // Algorithm Assumption: a and m are // coprimes, i.e., gcd(a, m) = 1 static int modInverse( int a, int m) { int m0 = m; int y = 0, x = 1; if (m == 1) return 0; while (a > 1) { // q is quotient int q = a / m; int t = m; // m is remainder now, process // same as Euclid's algo m = a % m; a = t; t = y; // Update x and y y = x - q * y; x = t; } // Make x positive if (x < 0) x += m0; return x; } // Driver Code public static void Main() { int a = 3, m = 11; // Function call Console.WriteLine( "Modular multiplicative " + "inverse is " + modInverse(a, m)); } } // This code is contributed by anuj_67. |
PHP
<≅php // Iterative PHP program to find modular // inverse using extended Euclid algorithm // Returns modulo inverse of a with respect // to m using extended Euclid Algorithm // Assumption: a and m are coprimes, i.e., // gcd(a, m) = 1 function modInverse( $a , $m ) { $m0 = $m ; $y = 0; $x = 1; if ( $m == 1) return 0; while ( $a > 1) { // q is quotient $q = (int) ( $a / $m ); $t = $m ; // m is remainder now, // process same as // Euclid's algo $m = $a % $m ; $a = $t ; $t = $y ; // Update y and x $y = $x - $q * $y ; $x = $t ; } // Make x positive if ( $x < 0) $x += $m0 ; return $x ; } // Driver Code $a = 3; $m = 11; // Function call echo "Modular multiplicative inverse is\n" , modInverse( $a , $m ); // This code is contributed by Anuj_67 ≅> |
Javascript
<script> // Iterative Javascript program to find modular // inverse using extended Euclid algorithm // Returns modulo inverse of a with respect // to m using extended Euclid Algorithm // Assumption: a and m are coprimes, i.e., // gcd(a, m) = 1 function modInverse(a, m) { let m0 = m; let y = 0; let x = 1; if (m == 1) return 0; while (a > 1) { // q is quotient let q = parseInt(a / m); let t = m; // m is remainder now, // process same as // Euclid's algo m = a % m; a = t; t = y; // Update y and x y = x - q * y; x = t; } // Make x positive if (x < 0) x += m0; return x; } // Driver Code let a = 3; let m = 11; // Function call document.write(`Modular multiplicative inverse is ${modInverse(a, m)}`); // This code is contributed by _saurabh_jaiswal </script> |
Modular multiplicative inverse is 4
Time Complexity: O(Log m)
Method 3 (Works when m is prime)
If we know m is prime, then we can also use Fermats’s little theorem to find the inverse.
am-1 ≅ 1 (mod m)
If we multiply both sides with a-1, we get
a-1 ≅ a m-2 (mod m)
Below is the implementation of the above idea.
C++
// C++ program to find modular inverse of a under modulo m // This program works only if m is prime. #include <iostream> using namespace std; // To find GCD of a and b int gcd( int a, int b); // To compute x raised to power y under modulo m int power( int x, unsigned int y, unsigned int m); // Function to find modular inverse of a under modulo m // Assumption: m is prime void modInverse( int a, int m) { int g = gcd(a, m); if (g != 1) cout << "Inverse doesn't exist" ; else { // If a and m are relatively prime, then modulo // inverse is a^(m-2) mode m cout << "Modular multiplicative inverse is " << power(a, m - 2, m); } } // To compute x^y under modulo m int power( int x, unsigned int y, unsigned int m) { if (y == 0) return 1; int p = power(x, y / 2, m) % m; p = (p * p) % m; return (y % 2 == 0) ? p : (x * p) % m; } // Function to return gcd of a and b int gcd( int a, int b) { if (a == 0) return b; return gcd(b % a, a); } // Driver code int main() { int a = 3, m = 11; // Function call modInverse(a, m); return 0; } |
Java
// Java program to find modular // inverse of a under modulo m // This program works only if // m is prime. import java.io.*; class GFG { // Function to find modular inverse of a // under modulo m Assumption: m is prime static void modInverse( int a, int m) { int g = gcd(a, m); if (g != 1 ) System.out.println( "Inverse doesn't exist" ); else { // If a and m are relatively prime, then modulo // inverse is a^(m-2) mode m System.out.println( "Modular multiplicative inverse is " + power(a, m - 2 , m)); } } static int power( int x, int y, int m) { if (y == 0 ) return 1 ; int p = power(x, y / 2 , m) % m; p = ( int )((p * ( long )p) % m); if (y % 2 == 0 ) return p; else return ( int )((x * ( long )p) % m); } // Function to return gcd of a and b static int gcd( int a, int b) { if (a == 0 ) return b; return gcd(b % a, a); } // Driver Code public static void main(String args[]) { int a = 3 , m = 11 ; // Function call modInverse(a, m); } } // This code is contributed by Nikita Tiwari. |
Python3
# Python3 program to find modular # inverse of a under modulo m # This program works only if m is prime. # Function to find modular # inverse of a under modulo m # Assumption: m is prime def modInverse(a, m): g = gcd(a, m) if (g ! = 1 ): print ( "Inverse doesn't exist" ) else : # If a and m are relatively prime, # then modulo inverse is a^(m-2) mode m print ( "Modular multiplicative inverse is " , power(a, m - 2 , m)) # To compute x^y under modulo m def power(x, y, m): if (y = = 0 ): return 1 p = power(x, y / / 2 , m) % m p = (p * p) % m if (y % 2 = = 0 ): return p else : return ((x * p) % m) # Function to return gcd of a and b def gcd(a, b): if (a = = 0 ): return b return gcd(b % a, a) # Driver Code a = 3 m = 11 # Function call modInverse(a, m) # This code is contributed by Nikita Tiwari. |
C#
// C# program to find modular // inverse of a under modulo m // This program works only if // m is prime. using System; class GFG { // Function to find modular // inverse of a under modulo // m Assumption: m is prime static void modInverse( int a, int m) { int g = gcd(a, m); if (g != 1) Console.Write( "Inverse doesn't exist" ); else { // If a and m are relatively // prime, then modulo inverse // is a^(m-2) mode m Console.Write( "Modular multiplicative inverse is " + power(a, m - 2, m)); } } // To compute x^y under // modulo m static int power( int x, int y, int m) { if (y == 0) return 1; int p = power(x, y / 2, m) % m; p = (p * p) % m; if (y % 2 == 0) return p; else return (x * p) % m; } // Function to return // gcd of a and b static int gcd( int a, int b) { if (a == 0) return b; return gcd(b % a, a); } // Driver Code public static void Main() { int a = 3, m = 11; // Function call modInverse(a, m); } } // This code is contributed by nitin mittal. |
PHP
<≅php // PHP program to find modular // inverse of a under modulo m // This program works only if m // is prime. // Function to find modular inverse // of a under modulo m // Assumption: m is prime function modInverse( $a , $m ) { $g = gcd( $a , $m ); if ( $g != 1) echo "Inverse doesn't exist" ; else { // If a and m are relatively // prime, then modulo inverse // is a^(m-2) mode m echo "Modular multiplicative inverse is " , power( $a , $m - 2, $m ); } } // To compute x^y under modulo m function power( $x , $y , $m ) { if ( $y == 0) return 1; $p = power( $x , $y / 2, $m ) % $m ; $p = ( $p * $p ) % $m ; return ( $y % 2 == 0)? $p : ( $x * $p ) % $m ; } // Function to return gcd of a and b function gcd( $a , $b ) { if ( $a == 0) return $b ; return gcd( $b % $a , $a ); } // Driver Code $a = 3; $m = 11; // Function call modInverse( $a , $m ); // This code is contributed by anuj_67. ≅> |
Javascript
<script> // Javascript program to find modular inverse of a under modulo m // This program works only if m is prime. // Function to find modular inverse of a under modulo m // Assumption: m is prime function modInverse(a, m) { let g = gcd(a, m); if (g != 1) document.write( "Inverse doesn't exist" ); else { // If a and m are relatively prime, then modulo // inverse is a^(m-2) mode m document.write( "Modular multiplicative inverse is " + power(a, m - 2, m)); } } // To compute x^y under modulo m function power(x, y, m) { if (y == 0) return 1; let p = power(x, parseInt(y / 2), m) % m; p = (p * p) % m; return (y % 2 == 0) ? p : (x * p) % m; } // Function to return gcd of a and b function gcd(a, b) { if (a == 0) return b; return gcd(b % a, a); } // Driver code let a = 3, m = 11; // Function call modInverse(a, m); // This code is contributed by subham348. </script> |
Modular multiplicative inverse is 4
Time Complexity: O(Log m)
We have discussed three methods to find multiplicative inverse modulo m.
1) Naive Method, O(m)
2) Extended Euler’s GCD algorithm, O(Log m) [Works when a and m are coprime]
3) Fermat’s Little theorem, O(Log m) [Works when ‘m’ is prime]
Applications:
Computation of the modular multiplicative inverse is an essential step in RSA public-key encryption method.
References:
https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
http://e-maxx.ru/algo/reverse_element
This article is contributed by Ankur. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.