 Open in App
Not now

# Multiplication table till N rows where every Kth row is table of K upto Kth term

• Last Updated : 08 Dec, 2022

Given a number N, the task is to print N rows where every Kth row consists of the multiplication table of K up to Kth term.

Examples:

Input: N = 3
Output:

2 4
3 6 9
Explanation:
In the above series, in every Kth row, multiplication table of K upto K terms is printed.

Input: N = 5
Output:

2 4
3 6 9
4 8 12 16
5 10 15 20 25

Approach: The idea is to use two for loops to print the multiplication table. The outer loop in ‘i’ serves as the value of ‘K’ and the inner loop in ‘j’ serves as the terms of the multiplication table of every ‘i’. Each term in the table of ‘i’ can be obtained with the formula ‘i * j’.

Below is the implementation of the above approach:

## C++

 `// C++ program to print multiplication table``// till N rows where every Kth row``// is the table of K up to Kth term``#include ``using` `namespace` `std;` `// Function to print the multiplication table``// upto K-th term``void` `printMultiples(``int` `N)``{``    ``// For loop to iterate from 1 to N``    ``// where i serves as the value of K``    ``for` `(``int` `i = 1; i <= N; i++)``    ``{` `        ``// Inner loop which at every``        ``// iteration goes till i``        ``for` `(``int` `j = 1; j <= i; j++)``        ``{` `            ``// Printing the table value for i``            ``cout << (i * j) << ``" "``;``        ``}` `        ``// New line after every row``        ``cout << endl;``    ``}``}` `// Driver code``int` `main()``{``    ``int` `N = 5;` `    ``printMultiples(N);` `    ``return` `0;``}` `// This code is contributed by Rajput-Ji`

## Java

 `// Java program to print multiplication table``// till N rows where every Kth row``// is the table of K up to Kth term` `class` `GFG {` `    ``// Function to print the multiplication table``    ``// upto K-th term``    ``public` `static` `void` `printMultiples(``int` `N)``    ``{``        ``// For loop to iterate from 1 to N``        ``// where i serves as the value of K``        ``for` `(``int` `i = ``1``; i <= N; i++) {` `            ``// Inner loop which at every``            ``// iteration goes till i``            ``for` `(``int` `j = ``1``; j <= i; j++) {` `                ``// Printing the table value for i``                ``System.out.print((i * j) + ``" "``);``            ``}` `            ``// New line after every row``            ``System.out.println();``        ``}``    ``}` `    ``// Driver code``    ``public` `static` `void` `main(String args[])``    ``{``        ``int` `N = ``5``;` `        ``printMultiples(N);``    ``}``}`

## Python3

 `# Python3 program to pr multiplication table``# till N rows where every Kth row``# is the table of K up to Kth term` `# Function to pr the multiplication table``# upto K-th term``def` `prMultiples(N):` `    ``# For loop to iterate from 1 to N``    ``# where i serves as the value of K``    ``for` `i ``in` `range``(``1``, N ``+` `1``):` `        ``# Inner loop which at every``        ``# iteration goes till i``        ``for` `j ``in` `range``(``1``, i ``+` `1``):` `            ``# Printing the table value for i``            ``print``((i ``*` `j), end ``=` `" "``)` `        ``# New line after every row``        ``print``()` `# Driver code``if` `__name__ ``=``=` `'__main__'``:``    ``N ``=` `5` `    ``prMultiples(N)` `# This code is contributed by mohit kumar 29`

## C#

 `// C# program to print multiplication table``// till N rows where every Kth row``// is the table of K up to Kth term``using` `System;` `class` `GFG``{` `    ``// Function to print the multiplication table``    ``// upto K-th term``    ``public` `static` `void` `printMultiples(``int` `N)``    ``{``        ``// For loop to iterate from 1 to N``        ``// where i serves as the value of K``        ``for` `(``int` `i = 1; i <= N; i++) {` `            ``// Inner loop which at every``            ``// iteration goes till i``            ``for` `(``int` `j = 1; j <= i; j++) {` `                ``// Printing the table value for i``                ``Console.Write((i * j) + ``" "``);``            ``}` `            ``// New line after every row``            ``Console.WriteLine();``        ``}``    ``}` `    ``// Driver code``    ``public` `static` `void` `Main(String []args)``    ``{``        ``int` `N = 5;` `        ``printMultiples(N);``    ``}``}` `// This code is contributed by Rajput-Ji`

## Javascript

 ``

Output:

```1
2 4
3 6 9
4 8 12 16
5 10 15 20 25```

Time Complexity: O(N2), here there are two loops with one running from 1 to N and another from 1 to i which means it is also running N times so it is a N*N complexity
Auxiliary Space: O(1), no extra array is being used so the space required is constant

My Personal Notes arrow_drop_up