 Open in App
Not now

# Multi Source Shortest Path in Unweighted Graph

• Difficulty Level : Medium
• Last Updated : 23 Jan, 2023

Suppose there are n towns connected by m bidirectional roads. There are s towns among them with a police station. We want to find out the distance of each town from the nearest police station. If the town itself has one the distance is 0.

Example:

```Input :
Number of Vertices = 6
Number of Edges = 9
Towns with Police Station : 1, 5
Edges:
1 2
1 6
2 6
2 3
3 6
5 4
6 5
3 4
5 3``` ```Output :
1 0
2 1
3 1
4 1
5 0
6 1```

Naive Approach: We can loop through the vertices and from each vertex run a BFS to find the closest town with police station from that vertex. This will take O(V.E).

Naive approach implementation using BFS from each vertex:

## C++

 `// C++ program to demonstrate distance to``// nearest source problem using BFS``// from each vertex``#include ``using` `namespace` `std;``#define N 100000 + 1``#define inf 1000000` `// This array stores the distances of the``// vertices from the nearest source``int` `dist[N];` `// a hash array where source[i] = 1``// means vertex i is a source``int` `source[N];` `// The BFS Queue``// The pairs are of the form (vertex, distance``// from current source)``deque > BFSQueue;` `// visited array for remembering visited vertices``int` `visited[N];` `// The BFS function``void` `BFS(vector<``int``> graph[], ``int` `start)``{``    ``// clearing the queue``    ``while` `(!BFSQueue.empty())``        ``BFSQueue.pop_back();` `    ``// push_back starting vertices``    ``BFSQueue.push_back({ start, 0 });` `    ``while` `(!BFSQueue.empty()) {` `        ``int` `s = BFSQueue.front().first;``        ``int` `d = BFSQueue.front().second;``        ``visited[s] = 1;``        ``BFSQueue.pop_front();` `        ``// stop at the first source we reach during BFS``        ``if` `(source[s] == 1) {``            ``dist[start] = d;``            ``return``;``        ``}` `        ``// Pushing the adjacent unvisited vertices``        ``// with distance from current source = this``        ``// vertex's distance  + 1``        ``for` `(``int` `i = 0; i < graph[s].size(); i++)``            ``if` `(visited[graph[s][i]] == 0)``                ``BFSQueue.push_back({ graph[s][i], d + 1 });``    ``}``}` `// This function calculates the distance of each``// vertex from nearest source``void` `nearestTown(vector<``int``> graph[], ``int` `n,``                       ``int` `sources[], ``int` `S)``{` `    ``// resetting the source hash array``    ``for` `(``int` `i = 1; i <= n; i++)``        ``source[i] = 0;``    ``for` `(``int` `i = 0; i <= S - 1; i++)``        ``source[sources[i]] = 1;` `    ``// loop through all the vertices and run``    ``// a BFS from each vertex to find the distance``    ``// to nearest town from it``    ``for` `(``int` `i = 1; i <= n; i++) {``        ``for` `(``int` `i = 1; i <= n; i++)``            ``visited[i] = 0;``        ``BFS(graph, i);``    ``}` `    ``// Printing the distances``    ``for` `(``int` `i = 1; i <= n; i++)``        ``cout << i << ``" "` `<< dist[i] << endl;``}` `void` `addEdge(vector<``int``> graph[], ``int` `u, ``int` `v)``{``    ``graph[u].push_back(v);``    ``graph[v].push_back(u);``}` `// Driver Code``int` `main()``{    ``// Number of vertices``    ``int` `n = 6;` `    ``vector<``int``> graph[n + 1];` `    ``// Edges``    ``addEdge(graph, 1, 2);``    ``addEdge(graph, 1, 6);``    ``addEdge(graph, 2, 6);``    ``addEdge(graph, 2, 3);``    ``addEdge(graph, 3, 6);``    ``addEdge(graph, 5, 4);``    ``addEdge(graph, 6, 5);``    ``addEdge(graph, 3, 4);``    ``addEdge(graph, 5, 3);` `    ``// Sources``    ``int` `sources[] = { 1, 5 };` `    ``int` `S = ``sizeof``(sources) / ``sizeof``(sources);` `    ``nearestTown(graph, n, sources, S);` `    ``return` `0;``}`

## Java

 `// Java program to demonstrate distance to``// nearest source problem using BFS``// from each vertex``import` `java.util.ArrayList;``import` `java.util.Arrays;``import` `java.util.Deque;``import` `java.util.LinkedList;` `class` `Pair``{``    ``int` `first, second;` `    ``public` `Pair(``int` `first, ``int` `second)``    ``{``        ``this``.first = first;``        ``this``.second = second;``    ``}``}` `class` `GFG{` `static` `final` `int` `N = ``100000` `+ ``1``;``static` `final` `int` `inf = ``1000000``;` `// This array stores the distances of the``// vertices from the nearest source``static` `int``[] dist = ``new` `int``[N];` `// a hash array where source[i] = 1``// means vertex i is a source``static` `int``[] source = ``new` `int``[N];` `// The BFS Queue``// The pairs are of the form (vertex, distance``// from current source)``static` `Deque BFSQueue = ``new` `LinkedList<>();``// deque > BFSQueue;` `// visited array for remembering visited vertices``static` `int``[] visited = ``new` `int``[N];` `// The BFS function``static` `void` `BFS(ArrayList[] graph, ``int` `start)``{``    ` `    ``// Clearing the queue``    ``while` `(!BFSQueue.isEmpty())``        ``BFSQueue.removeLast();` `    ``// push_back starting vertices``    ``BFSQueue.add(``new` `Pair(start, ``0``));` `    ``while` `(!BFSQueue.isEmpty())``    ``{``        ``int` `s = BFSQueue.peekFirst().first;``        ``int` `d = BFSQueue.peekFirst().second;``        ``visited[s] = ``1``;``        ``BFSQueue.removeFirst();` `        ``// Stop at the first source``        ``// we reach during BFS``        ``if` `(source[s] == ``1``)``        ``{``            ``dist[start] = d;``            ``return``;``        ``}` `        ``// Pushing the adjacent unvisited vertices``        ``// with distance from current source = this``        ``// vertex's distance + 1``        ``for``(``int` `i = ``0``; i < graph[s].size(); i++)``            ``if` `(visited[graph[s].get(i)] == ``0``)``                ``BFSQueue.add(``new` `Pair(``                    ``graph[s].get(i), d + ``1``));``    ``}``}` `// This function calculates the distance of each``// vertex from nearest source``static` `void` `nearestTown(ArrayList[] graph,``                        ``int` `n, ``int` `sources[], ``int` `S)``{``    ` `    ``// Resetting the source hash array``    ``for``(``int` `i = ``1``; i <= n; i++)``        ``source[i] = ``0``;``    ``for``(``int` `i = ``0``; i <= S - ``1``; i++)``        ``source[sources[i]] = ``1``;` `    ``// Loop through all the vertices and run``    ``// a BFS from each vertex to find the distance``    ``// to nearest town from it``    ``for``(``int` `i = ``1``; i <= n; i++)``    ``{``        ``for``(``int` `j = ``1``; j <= n; j++)``            ``visited[j] = ``0``;``            ` `        ``BFS(graph, i);``    ``}` `    ``// Printing the distances``    ``for``(``int` `i = ``1``; i <= n; i++)``        ``System.out.println(i + ``" "` `+ dist[i]);``}` `static` `void` `addEdge(ArrayList[] graph,``                    ``int` `u, ``int` `v)``{``    ``graph[u].add(v);``    ``graph[v].add(u);``}` `// Driver Code``public` `static` `void` `main(String[] args)``{``    ` `    ``// Number of vertices``    ``int` `n = ``6``;` `    ``@SuppressWarnings``(``"unchecked"``)``    ``ArrayList[] graph = ``new` `ArrayList[n + ``1``];``    ``Arrays.fill(graph, ``new` `ArrayList<>());` `    ``// Edges``    ``addEdge(graph, ``1``, ``2``);``    ``addEdge(graph, ``1``, ``6``);``    ``addEdge(graph, ``2``, ``6``);``    ``addEdge(graph, ``2``, ``3``);``    ``addEdge(graph, ``3``, ``6``);``    ``addEdge(graph, ``5``, ``4``);``    ``addEdge(graph, ``6``, ``5``);``    ``addEdge(graph, ``3``, ``4``);``    ``addEdge(graph, ``5``, ``3``);` `    ``// Sources``    ``int` `sources[] = { ``1``, ``5` `};` `    ``int` `S = sources.length;` `    ``nearestTown(graph, n, sources, S);``}``}` `// This code is contributed by sanjeev2552`

## Python3

 `# Python3 program to demonstrate distance to``# nearest source problem using BFS``# from each vertex` `N ``=` `100001``inf ``=` `1000000`` ` `# This array stores the distances of the``# vertices from the nearest source``dist ``=` `[``0` `for` `i ``in` `range``(N)];`` ` `# a hash array where source[i] = 1``# means vertex i is a source``source ``=` `[``0` `for` `i ``in` `range``(N)];`` ` `# The BFS Queue``# The pairs are of the form (vertex, distance``# from current source)``BFSQueue ``=` `[]`` ` `# visited array for remembering visited vertices``visited ``=` `[``0` `for` `i ``in` `range``(N)];`` ` `# The BFS function``def` `BFS(graph, start):` `    ``# clearing the queue``    ``while` `(``len``(BFSQueue) !``=` `0``):``        ``BFSQueue.pop();`` ` `    ``# append starting vertices``    ``BFSQueue.append([ start, ``0` `]);`` ` `    ``while` `(``len``(BFSQueue) !``=` `0``):`` ` `        ``s ``=` `BFSQueue[``0``][``0``];``        ``d ``=` `BFSQueue[``0``][``1``];` `        ``visited[s] ``=` `1``;``        ``BFSQueue.pop(``0``);`` ` `        ``# stop at the first source we reach during BFS``        ``if` `(source[s] ``=``=` `1``):``            ``dist[start] ``=` `d;``            ``return``;``         ` `        ``# Pushing the adjacent unvisited vertices``        ``# with distance from current source = this``        ``# vertex's distance  + 1``        ``for` `i ``in` `range``(``len``(graph[s])):``        ` `            ``if` `(visited[graph[s][i]] ``=``=` `0``):``                ``BFSQueue.append([ graph[s][i], d ``+` `1` `]);``     ` `# This function calculates the distance of each``# vertex from nearest source``def` `nearestTown(graph, n, sources, S):``    ``global` `source, dist``    ` `    ``# resetting the source hash array``    ``for` `i ``in` `range``(``1``, n ``+` `1``):``        ``source[i] ``=` `0``;``        ` `    ``for` `i ``in` `range``(S):``        ``source[sources[i]] ``=` `1``;`` ` `    ``# loop through all the vertices and run``    ``# a BFS from each vertex to find the distance``    ``# to nearest town from it``    ``for` `i ``in` `range``(``1``, n ``+` `1``):``        ``for` `j ``in` `range``(``1``, n ``+` `1``):``            ``visited[j] ``=` `0``;``        ``BFS(graph, i);`` ` `    ``# Printing the distances``    ``for` `i ``in` `range``(``1``, n ``+` `1``):``        ` `        ``print``(``'{} {}'``.``format``(i,dist[i]))``         ` `def` `addEdge(graph, u, v):` `    ``graph[u].append(v);``    ``graph[v].append(u);`` ` `# Driver Code``if` `__name__``=``=``'__main__'``:``    ` `    ``# Number of vertices``    ``n ``=` `6`` ` `    ``graph ``=` `[[] ``for` `i ``in` `range``(n ``+` `1``)];`` ` `    ``# Edges``    ``addEdge(graph, ``1``, ``2``);``    ``addEdge(graph, ``1``, ``6``);``    ``addEdge(graph, ``2``, ``6``);``    ``addEdge(graph, ``2``, ``3``);``    ``addEdge(graph, ``3``, ``6``);``    ``addEdge(graph, ``5``, ``4``);``    ``addEdge(graph, ``6``, ``5``);``    ``addEdge(graph, ``3``, ``4``);``    ``addEdge(graph, ``5``, ``3``);`` ` `    ``# Sources``    ``sources ``=` `[ ``1``, ``5` `]`` ` `    ``S ``=` `len``(sources)`` ` `    ``nearestTown(graph, n, sources, S);`` ` `# This code is contributed by rutvik_56`

## C#

 `// C# program to demonstrate distance to``// nearest source problem using BFS``// from each vertex``using` `System;``using` `System.Collections.Generic;``class` `GFG {``    ` `    ``static` `int` `N = 100000 + 1;``     ` `    ``// This array stores the distances of the``    ``// vertices from the nearest source``    ``static` `int``[] dist = ``new` `int``[N];``     ` `    ``// a hash array where source[i] = 1``    ``// means vertex i is a source``    ``static` `int``[] source = ``new` `int``[N];``     ` `    ``// The BFS Queue``    ``// The pairs are of the form (vertex, distance``    ``// from current source)``    ``static` `List> BFSQueue = ``new` `List>();``    ``// deque > BFSQueue;``     ` `    ``// visited array for remembering visited vertices``    ``static` `int``[] visited = ``new` `int``[N];``     ` `    ``// The BFS function``    ``static` `void` `BFS(List> graph, ``int` `start)``    ``{``         ` `        ``// Clearing the queue``        ``while` `(BFSQueue.Count > 0)``            ``BFSQueue.RemoveAt(BFSQueue.Count - 1);``     ` `        ``// push_back starting vertices``        ``BFSQueue.Add(``new` `Tuple<``int``,``int``>(start, 0));``     ` `        ``while` `(BFSQueue.Count > 0)``        ``{``            ``int` `s = BFSQueue.Item1;``            ``int` `d = BFSQueue.Item2;``            ``visited[s] = 1;``            ``BFSQueue.RemoveAt(0);``     ` `            ``// Stop at the first source``            ``// we reach during BFS``            ``if` `(source[s] == 1)``            ``{``                ``dist[start] = d;``                ``return``;``            ``}``     ` `            ``// Pushing the adjacent unvisited vertices``            ``// with distance from current source = this``            ``// vertex's distance + 1``            ``for``(``int` `i = 0; i < graph[s].Count; i++)``                ``if` `(visited[graph[s][i]] == 0)``                    ``BFSQueue.Add(``new` `Tuple<``int``,``int``>(``                        ``graph[s][i], d + 1));``        ``}``    ``}``     ` `    ``// This function calculates the distance of each``    ``// vertex from nearest source``    ``static` `void` `nearestTown(List> graph, ``int` `n, ``int``[] sources, ``int` `S)``    ``{``         ` `        ``// Resetting the source hash array``        ``for``(``int` `i = 1; i <= n; i++)``            ``source[i] = 0;``        ``for``(``int` `i = 0; i <= S - 1; i++)``            ``source[sources[i]] = 1;``     ` `        ``// Loop through all the vertices and run``        ``// a BFS from each vertex to find the distance``        ``// to nearest town from it``        ``for``(``int` `i = 1; i <= n; i++)``        ``{``            ``for``(``int` `j = 1; j <= n; j++)``                ``visited[j] = 0;``                 ` `            ``BFS(graph, i);``        ``}``     ` `        ``// Printing the distances``        ``for``(``int` `i = 1; i <= n; i++)``            ``Console.WriteLine(i + ``" "` `+ dist[i]);``    ``}``     ` `    ``static` `void` `addEdge(List> graph, ``int` `u, ``int` `v)``    ``{``        ``graph[u].Add(v);``        ``graph[v].Add(u);``    ``}` `  ``static` `void` `Main() {``    ``// Number of vertices``    ``int` `n = 6;`` ` `    ``List> graph = ``new` `List>();``    ``for``(``int` `i = 0; i < n + 1; i++)``    ``{``        ``graph.Add(``new` `List<``int``>());``    ``}`` ` `    ``// Edges``    ``addEdge(graph, 1, 2);``    ``addEdge(graph, 1, 6);``    ``addEdge(graph, 2, 6);``    ``addEdge(graph, 2, 3);``    ``addEdge(graph, 3, 6);``    ``addEdge(graph, 5, 4);``    ``addEdge(graph, 6, 5);``    ``addEdge(graph, 3, 4);``    ``addEdge(graph, 5, 3);`` ` `    ``// Sources``    ``int``[] sources = { 1, 5 };`` ` `    ``int` `S = sources.Length;`` ` `    ``nearestTown(graph, n, sources, S);``  ``}``}` `// This code is contributed by divyeshrabadiya07.`

## Javascript

 ``

Output

```1 0
2 1
3 1
4 1
5 0
6 1```

Complexity Analysis:

• Time Complexity: O(V.E)
• Auxiliary Space: O(V)

Efficient Method A better method is to use the Dijkstra’s algorithm in a modified way. Let’s consider one of the sources as the original source and the other sources to be vertices with 0 cost paths from the original source. Thus we push all the sources into the Dijkstra Queue with distance = 0, and the rest of the vertices with distance = infinity. The minimum distance of each vertex from the original source now calculated using the Dijkstra’s Algorithm are now essentially the distances from the nearest source.

Explanation:

The C++ implementation uses a set of pairs (distance from the source, vertex) sorted according to the distance from the source. Initially, the set contains the sources with distance = 0 and all the other vertices with distance = infinity.

On each step, we will go to the vertex with minimum distance(d) from source, i.e, the first element of the set (the source itself in the first step with distance = 0). We go through all it’s adjacent vertices and if the distance of any vertex is > d + 1 we replace its entry in the set with the new distance. Then we remove the current vertex from the set. We continue this until the set is empty.

The idea is there cannot be a shorter path to the vertex at the front of the set than the current one since any other path will be a sum of a longer path (>= it’s length) and a non-negative path length (unless we are considering negative edges).

Since all the sources have a distance = 0, in the beginning, the adjacent non-source vertices will get a distance = 1. All vertices will get distance = distance from their nearest source.

Implementation of Efficient Approach:

## C++

 `// C++ program to demonstrate``// multi-source BFS``#include ``using` `namespace` `std;``#define N 100000 + 1``#define inf 1000000` `// This array stores the distances of the vertices``// from the nearest source``int` `dist[N];` `// This Set contains the vertices not yet visited in``// increasing order of distance from the nearest source``// calculated till now``set > Q;` `// Util function for Multi-Source BFS``void` `multiSourceBFSUtil(vector<``int``> graph[], ``int` `s)``{``    ``set >::iterator it;``    ``int` `i;``    ``for` `(i = 0; i < graph[s].size(); i++) {``        ``int` `v = graph[s][i];``        ``if` `(dist[s] + 1 < dist[v]) {` `            ``// If a shorter path to a vertex is``            ``// found than the currently stored``            ``// distance replace it in the Q``            ``it = Q.find({ dist[v], v });``            ``Q.erase(it);``            ``dist[v] = dist[s] + 1;``            ``Q.insert({ dist[v], v });``        ``}``    ``}` `    ``// Stop when the Q is empty -> All``    ``// vertices have been visited. And we only``    ``// visit a vertex when we are sure that a``    ``// shorter path to that vertex is not``    ``// possible``    ``if` `(Q.size() == 0)``        ``return``;` `    ``// Go to the first vertex in Q``    ``// and remove it from the Q``    ``it = Q.begin();``    ``int` `next = it->second;``    ``Q.erase(it);` `    ``multiSourceBFSUtil(graph, next);``}` `// This function calculates the distance of``// each vertex from nearest source``void` `multiSourceBFS(vector<``int``> graph[], ``int` `n,``                          ``int` `sources[], ``int` `S)``{``    ``// a hash array where source[i] = 1``    ``// means vertex i is a source``    ``int` `source[n + 1];` `    ``for` `(``int` `i = 1; i <= n; i++)``        ``source[i] = 0;``    ``for` `(``int` `i = 0; i <= S - 1; i++)``        ``source[sources[i]] = 1;` `    ``for` `(``int` `i = 1; i <= n; i++) {``        ``if` `(source[i]) {``            ``dist[i] = 0;``            ``Q.insert({ 0, i });``        ``}``        ``else` `{``            ``dist[i] = inf;``            ``Q.insert({ inf, i });``        ``}``    ``}` `    ``set >::iterator itr;` `    ``// Get the vertex with lowest distance,``    ``itr = Q.begin();` `    ``// currently one of the sources with distance = 0``    ``int` `start = itr->second;` `    ``multiSourceBFSUtil(graph, start);` `    ``// Printing the distances``    ``for` `(``int` `i = 1; i <= n; i++)``        ``cout << i << ``" "` `<< dist[i] << endl;``}` `void` `addEdge(vector<``int``> graph[], ``int` `u, ``int` `v)``{``    ``graph[u].push_back(v);``    ``graph[v].push_back(u);``}` `// Driver Code``int` `main()``{``    ``// Number of vertices``    ``int` `n = 6;` `    ``vector<``int``> graph[n + 1];` `    ``// Edges``    ``addEdge(graph, 1, 2);``    ``addEdge(graph, 1, 6);``    ``addEdge(graph, 2, 6);``    ``addEdge(graph, 2, 3);``    ``addEdge(graph, 3, 6);``    ``addEdge(graph, 5, 4);``    ``addEdge(graph, 6, 5);``    ``addEdge(graph, 3, 4);``    ``addEdge(graph, 5, 3);` `    ``// Sources``    ``int` `sources[] = { 1, 5 };` `    ``int` `S = ``sizeof``(sources) / ``sizeof``(sources);` `    ``multiSourceBFS(graph, n, sources, S);` `    ``return` `0;``}`

## Java

 `import` `java.util.*;` `class` `GFG {` `    ``// This array stores the distances of the vertices``    ``// from the nearest source``    ``static` `int``[] dist;` `    ``// This Set contains the vertices not yet visited in``    ``// increasing order of distance from the nearest source``    ``// calculated till now``    ``static` `Set > Q``        ``= ``new` `HashSet<>();` `    ``// Util function for Multi-Source BFS``    ``static` `void` `multiSourceBFSUtil(List[] graph,``                                   ``int` `s)``    ``{``        ``Iterator > it;``        ``for` `(``int` `i = ``0``; i < graph[s].size(); i++) {``            ``int` `v = graph[s].get(i);``            ``if` `(dist[s] + ``1` `< dist[v]) {` `                ``// If a shorter path to a vertex is``                ``// found than the currently stored``                ``// distance replace it in the Q``                ``it = Q.iterator();``                ``while` `(it.hasNext()) {``                    ``Map.Entry entry``                        ``= it.next();``                    ``if` `(entry.getValue() == v) {``                        ``Q.remove(entry);``                        ``break``;``                    ``}``                ``}``                ``dist[v] = dist[s] + ``1``;``                ``Q.add(Map.entry(dist[v], v));``            ``}``        ``}` `        ``// Stop when the Q is empty -> All``        ``// vertices have been visited. And we only``        ``// visit a vertex when we are sure that a``        ``// shorter path to that vertex is not``        ``// possible``        ``if` `(Q.size() == ``0``)``            ``return``;` `        ``// Go to the first vertex in Q``        ``// and remove it from the Q``        ``int` `next = Q.iterator().next().getValue();``        ``Q.remove(Map.entry(dist[next], next));` `        ``multiSourceBFSUtil(graph, next);``    ``}` `    ``// This function calculates the distance of``    ``// each vertex from nearest source``    ``// static void multiSourceBFS(List[] graph, int``    ``// n, int[] sources) {``    ``// // Initialize the dist array with MAX_VALUE``    ``// dist = new int[n + 1];``    ``// Arrays.fill(dist, Integer.MAX_VALUE);` `    ``// // Set the distance of the sources to 0``    ``// for (int i = 0; i < sources.length; i++) {``    ``//     dist[sources[i]] = 0;``    ``// }` `    ``// for (int i = 1; i <= n; i++) {``    ``//     Q.add(Map.entry(dist[i], i));``    ``// }``    ``static` `void` `multiSourceBFS(List[] graph, ``int` `n,``                               ``int``[] sources)``    ``{``        ``// Initialize the dist array with n``        ``dist = ``new` `int``[n + ``1``];``        ``Arrays.fill(dist, n);` `        ``// Set the distance of the sources to 0``        ``for` `(``int` `i = ``0``; i < sources.length; i++) {``            ``dist[sources[i]] = ``0``;``        ``}` `        ``for` `(``int` `i = ``1``; i <= n; i++) {``            ``Q.add(Map.entry(dist[i], i));``        ``}``        ``// rest of the code is same``        ``//...` `        ``// Get the vertex with lowest distance,``        ``int` `start = Q.iterator().next().getValue();` `        ``multiSourceBFSUtil(graph, start);` `        ``// Printing the distances``        ``for` `(``int` `i = ``1``; i <= n; i++)``            ``System.out.println(i + ``" "` `+ dist[i]);``    ``}` `    ``static` `void` `addEdge(List[] graph, ``int` `u, ``int` `v)``    ``{``        ``graph[u].add(v);``        ``graph[v].add(u);``    ``}` `    ``// Driver Code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``// Number of vertices``        ``int` `n = ``6``;` `        ``List[] graph = ``new` `List[n + ``1``];``        ``for` `(``int` `i = ``0``; i <= n; i++) {``            ``graph[i] = ``new` `ArrayList<>();``        ``}` `        ``// Edges``        ``addEdge(graph, ``1``, ``2``);``        ``addEdge(graph, ``1``, ``6``);``        ``addEdge(graph, ``2``, ``6``);``        ``addEdge(graph, ``2``, ``3``);``        ``addEdge(graph, ``3``, ``6``);``        ``addEdge(graph, ``5``, ``4``);``        ``addEdge(graph, ``6``, ``5``);``        ``addEdge(graph, ``3``, ``4``);``        ``addEdge(graph, ``5``, ``3``);` `        ``// Sources``        ``int``[] sources = { ``1``, ``5` `};` `        ``multiSourceBFS(graph, n, sources);``    ``}``} ``// this code is contributed by devendra`

## Python3

 `# Python3 program to demonstrate``# multi-source BFS``import` `math` `N``=``100000` `+` `1``inf``=``1000000` `# This array stores the distances of the vertices``# from the nearest source``inf ``=` `math.inf``dist``=``[inf]``*``N` `# This Set contains the vertices not yet visited in``# increasing order of distance from the nearest source``# calculated till now``Q``=``set``()` `# Util function for Multi-Source BFS``def` `multiSourceBFSUtil(graph,  s):``    ``for` `i ``in` `range``(``len``(graph[s])):``        ``v ``=` `graph[s][i]``        ``if` `(dist[s] ``+` `1` `< dist[v]) :` `            ``# If a shorter path to a vertex is``            ``# found than the currently stored``            ``# distance replace it in the Q``            ``if` `(dist[v],v) ``in` `Q:``                ``Q.remove((dist[v],v))``            ``dist[v] ``=` `dist[s] ``+` `1``            ``Q.add((dist[v], v))``        ` `    `  `    ``# Stop when the Q is empty . All``    ``# vertices have been visited. And we only``    ``# visit a vertex when we are sure that a``    ``# shorter path to that vertex is not``    ``# possible``    ``if` `(``len``(Q) ``=``=` `0``):``        ``return` `    ``# Go to the first vertex in Q``    ``# and remove it from the Q``    ``it ``=` `min``(Q)``    ``next``=``it[``1``]``    ``Q.remove(it)` `    ``multiSourceBFSUtil(graph, ``next``)`  `# This function calculates the distance of``# each vertex from nearest source``def` `multiSourceBFS(graph,  n, sources, S):``    ``# a hash array where source[i] = 1``    ``# means vertex i is a source``    ``source``=``[``0``]``*``(n ``+` `1``)` `    ``for` `i ``in` `range``(``0``,S):``        ``source[sources[i]] ``=` `1` `    ``for` `i ``in` `range``(``1``,n):``        ``if` `(source[i]) :``            ``dist[i] ``=` `0``            ``Q.add((``0``, i))``        ` `        ``else` `:``            ``dist[i] ``=` `math.inf``            ``Q.add((math.inf, i))` `    ``# Get the vertex with lowest distance,``    ``itr ``=` `min``(Q)``    ``start``=``itr[``1``]` `    ``Q.remove(itr)` `    ``multiSourceBFSUtil(graph, start)` `    ``# Print the distances``    ``for` `i ``in` `range``(``1``,n``+``1``):``        ``print``(i,dist[i])`  `def` `addEdge(graph,  u,  v):``    ``graph[u].append(v)``    ``graph[v].append(u)`  `# Driver Code``if` `__name__ ``=``=` `'__main__'``:``    ``# Number of vertices``    ``n ``=` `6` `    ``graph``=``[[] ``for` `_ ``in` `range``(n``+``1``)]` `    ``# Edges``    ``addEdge(graph, ``1``, ``2``)``    ``addEdge(graph, ``1``, ``6``)``    ``addEdge(graph, ``2``, ``6``)``    ``addEdge(graph, ``2``, ``3``)``    ``addEdge(graph, ``3``, ``6``)``    ``addEdge(graph, ``5``, ``4``)``    ``addEdge(graph, ``6``, ``5``)``    ``addEdge(graph, ``3``, ``4``)``    ``addEdge(graph, ``5``, ``3``)` `    ``# Sources``    ``sources ``=` `(``1``, ``5``)` `    ``S ``=` `len``(sources)` `    ``multiSourceBFS(graph, n, sources, S)`

Output

```1 0
2 1
3 1
4 1
5 0
6 1```

Complexity Analysis:

• Time Complexity: O(E.logV)
• Auxiliary Space: O(V)

More Efficient Approach: An even better method is to use the Multisource BFS which is a modification of BFS.We will put the all source vertices to the queue at first rather than a single vertex which was in case of standard BFS.This way Multisource BFS will first visit all the source vertices. After that it will visit the vertices which are at a distance of 1 from all source vertices, then at a distance of 2 from all source vertices and so on and so forth.

Below is the implementation of the above approach:

## C++

 `// C++ program to demonstrate Multi-source BFS``#include``using` `namespace` `std;``#define N 1000000` `// This array stores the distances of the vertices``// from the nearest source``int` `dist[N];` `//This boolean array is true if the current vertex``// is visited otherwise it is false``bool` `visited[N];`  `void` `addEdge(vector<``int``> graph[], ``int` `u, ``int` `v)``{``    ``//Function to add 2 edges in an undirected graph``    ``graph[u].push_back(v);``    ``graph[v].push_back(u);``}` `// Multisource BFS Function``void` `Multisource_BFS(vector<``int``> graph[],queue<``int``>q)``{``    ``while``(!q.empty())``    ``{``        ``int` `k = q.front();``        ``q.pop();``    ` `        ``for``(``auto` `i:graph[k])``        ``{``            ``if``(!visited[i])``            ``{``    ` `                ``// Pushing the adjacent unvisited vertices``                ``// with distance from current source = this``                ``// vertex's distance + 1``                ``q.push(i);``                ``dist[i] = dist[k] + 1;``                ``visited[i] = ``true``;``            ``}``        ``}``    ``}``}`  `// This function calculates the distance of each``// vertex from nearest source``void` `nearestTown(vector<``int``> graph[],``int` `n,``int` `sources[],``int` `s)``{``    ``//Create a queue for BFS``    ``queue<``int``> q;` `    ``//Mark all the source vertices as visited and enqueue it``    ``for``(``int` `i = 0;i < s; i++)``    ``{``        ``q.push(sources[i]);``        ``visited[sources[i]]=``true``;``    ``}` `    ``Multisource_BFS(graph,q);`  `    ``//Printing the distances``    ``for``(``int` `i = 1; i <= n; i++)``    ``{``        ``cout<< i << ``" "` `<< dist[i] << endl;``    ``}` `}`  `// Driver code``int` `main()``{    ``    ``// Number of vertices``    ``int` `n = 6;` `    ``vector<``int``> graph[n + 1];` `    ``// Edges``    ``addEdge(graph, 1, 2);``    ``addEdge(graph, 1, 6);``    ``addEdge(graph, 2, 6);``    ``addEdge(graph, 2, 3);``    ``addEdge(graph, 3, 6);``    ``addEdge(graph, 5, 4);``    ``addEdge(graph, 6, 5);``    ``addEdge(graph, 3, 4);``    ``addEdge(graph, 5, 3);` `    ``// Sources``    ``int` `sources[] = { 1, 5 };` `    ``int` `S = ``sizeof``(sources) / ``sizeof``(sources);` `    ``nearestTown(graph, n, sources, S);` `    ``return` `0;``}`

## Java

 `// Java program to demonstrate Multi-source BFS``import` `java.util.*;``import` `java.math.*;` `class` `GFG{``    ` `static` `int` `N = ``1000000``;` `// This array stores the distances of the vertices``// from the nearest source``static` `int` `dist[] = ``new` `int``[N];` `//This boolean array is true if the current vertex``// is visited otherwise it is false``static` `boolean` `visited[] = ``new` `boolean``[N];` `static` `void` `addEdge(ArrayList graph[],``                    ``int` `u, ``int` `v)``{``    ` `    ``// Function to add 2 edges in an undirected graph``    ``graph[u].add(v);``    ``graph[v].add(u);``}` `// Multisource BFS Function``static` `void` `Multisource_BFS(ArrayList graph[],``                                ``Queueq)``{``    ``while` `(!q.isEmpty())``    ``{``        ``int` `k = q.peek();``        ``q.poll();``    ` `        ``for``(``int` `i:graph[k])``        ``{``            ``if` `(!visited[i])``            ``{``    ` `                ``// Pushing the adjacent unvisited vertices``                ``// with distance from current source = this``                ``// vertex's distance + 1``                ``q.add(i);``                ``dist[i] = dist[k] + ``1``;``                ``visited[i] = ``true``;``            ``}``        ``}``    ``}``}` `// This function calculates the distance of each``// vertex from nearest source``static` `void` `nearestTown(ArrayList graph[],``                        ``int` `n, ``int` `sources[], ``int` `s)``{``    ` `    ``// Create a queue for BFS``    ``Queue q=``new` `LinkedList<>();` `    ``// Mark all the source vertices as``    ``// visited and enqueue it``    ``for``(``int` `i = ``0``;i < s; i++)``    ``{``        ``q.add(sources[i]);``        ``visited[sources[i]] = ``true``;``    ``}` `    ``Multisource_BFS(graph, q);` `    ``// Printing the distances``    ``for``(``int` `i = ``1``; i <= n; i++)``    ``{``        ``System.out.println(i + ``" "` `+ dist[i]);``    ``}``}` `// Driver code``public` `static` `void` `main(String args[])``{  ``    ` `    ``// Number of vertices``    ``int` `n = ``6``;``    ``@SuppressWarnings``(``"unchecked"``)``    ``ArrayList graph[] = ``new` `ArrayList[N + ``1``];``    ` `    ``for``(``int` `i = ``0``; i < graph.length; i++)``        ``graph[i] = ``new` `ArrayList();` `    ``// Edges``    ``addEdge(graph, ``1``, ``2``);``    ``addEdge(graph, ``1``, ``6``);``    ``addEdge(graph, ``2``, ``6``);``    ``addEdge(graph, ``2``, ``3``);``    ``addEdge(graph, ``3``, ``6``);``    ``addEdge(graph, ``5``, ``4``);``    ``addEdge(graph, ``6``, ``5``);``    ``addEdge(graph, ``3``, ``4``);``    ``addEdge(graph, ``5``, ``3``);` `    ``// Sources``    ``int` `sources[] = { ``1``, ``5` `};` `    ``int` `S = sources.length;` `    ``nearestTown(graph, n, sources, S);``}``}` `// This code is contributed by Debojyoti Mandal`

## Python3

 `# Python3 program to demonstrate Multi-source BFS``N ``=` `1000000``     ` `# This array stores the distances of the vertices``# from the nearest source``dist ``=` `[``0``]``*``(N)` `# This boolean array is true if the current vertex``# is visited otherwise it is false``visited ``=` `[``False``]``*``(N)`` ` `def` `addEdge(graph, u, v):``  ` `    ``# Function to add 2 edges in an undirected graph``    ``graph[u].append(v);``    ``graph[v].append(u)` `# Multisource BFS Function``def` `Multisource_BFS(graph, q):``    ``while``(``len``(q) > ``0``):``        ``k ``=` `q[``0``]``        ``q.pop(``0``)` `        ``for` `i ``in` `range``(``len``(graph[k])):``            ``if` `not` `visited[graph[k][i]]:``                ``# Pushing the adjacent unvisited vertices``                ``# with distance from current source = this``                ``# vertex's distance + 1``                ``q.append(graph[k][i])``                ``dist[graph[k][i]] ``=` `dist[k] ``+` `1``                ``visited[graph[k][i]] ``=` `True`  `# This function calculates the distance of each``# vertex from nearest source``def` `nearestTown(graph, n, sources, s):``    ``# Create a queue for BFS``    ``q ``=` `[]` `    ``# Mark all the source vertices as visited and enqueue it``    ``for` `i ``in` `range``(s):``        ``q.append(sources[i])``        ``visited[sources[i]]``=``True` `    ``Multisource_BFS(graph,q)` `    ``# Printing the distances``    ``for` `i ``in` `range``(``1``, n ``+` `1``):``        ``print``(i, ``" "``, dist[i], sep ``=` `"")` `# Number of vertices``n ``=` `6` `graph ``=` `[]``for` `i ``in` `range``(n ``+` `1``):``    ``graph.append([])` `# Edges``addEdge(graph, ``1``, ``2``)``addEdge(graph, ``1``, ``6``)``addEdge(graph, ``2``, ``6``)``addEdge(graph, ``2``, ``3``)``addEdge(graph, ``3``, ``6``)``addEdge(graph, ``5``, ``4``)``addEdge(graph, ``6``, ``5``)``addEdge(graph, ``3``, ``4``)``addEdge(graph, ``5``, ``3``)` `# Sources``sources ``=` `[ ``1``, ``5` `]` `S ``=` `len``(sources)` `nearestTown(graph, n, sources, S)` `# This code is contributed by rameshtravel07.`

## C#

 `// C# program to demonstrate Multi-source BFS``using` `System;``using` `System.Collections.Generic;``class` `GFG {``    ` `    ``static` `int` `N = 1000000;`` ` `    ``// This array stores the distances of the vertices``    ``// from the nearest source``    ``static` `int``[] dist = ``new` `int``[N];``     ` `    ``//This boolean array is true if the current vertex``    ``// is visited otherwise it is false``    ``static` `bool``[] visited = ``new` `bool``[N];``     ` `    ``static` `void` `addEdge(List> graph, ``int` `u, ``int` `v)``    ``{``         ` `        ``// Function to add 2 edges in an undirected graph``        ``graph[u].Add(v);``        ``graph[v].Add(u);``    ``}``     ` `    ``// Multisource BFS Function``    ``static` `void` `Multisource_BFS(List> graph, List<``int``> q)``    ``{``        ``while` `(q.Count > 0)``        ``{``            ``int` `k = q;``            ``q.RemoveAt(0);``         ` `            ``foreach``(``int` `i ``in` `graph[k])``            ``{``                ``if` `(!visited[i])``                ``{``         ` `                    ``// Pushing the adjacent unvisited vertices``                    ``// with distance from current source = this``                    ``// vertex's distance + 1``                    ``q.Add(i);``                    ``dist[i] = dist[k] + 1;``                    ``visited[i] = ``true``;``                ``}``            ``}``        ``}``    ``}``     ` `    ``// This function calculates the distance of each``    ``// vertex from nearest source``    ``static` `void` `nearestTown(List> graph, ``int` `n, ``int``[] sources, ``int` `s)``    ``{``         ` `        ``// Create a queue for BFS``        ``List<``int``> q = ``new` `List<``int``>();``     ` `        ``// Mark all the source vertices as``        ``// visited and enqueue it``        ``for``(``int` `i = 0;i < s; i++)``        ``{``            ``q.Add(sources[i]);``            ``visited[sources[i]] = ``true``;``        ``}``     ` `        ``Multisource_BFS(graph, q);``     ` `        ``// Printing the distances``        ``for``(``int` `i = 1; i <= n; i++)``        ``{``            ``Console.WriteLine(i + ``" "` `+ dist[i]);``        ``}``    ``}`  `  ``static` `void` `Main() {``    ``// Number of vertices``    ``int` `n = 6;``    ``List> graph = ``new` `List>();``     ` `    ``for``(``int` `i = 0; i < N + 1; i++)``        ``graph.Add(``new` `List<``int``>());`` ` `    ``// Edges``    ``addEdge(graph, 1, 2);``    ``addEdge(graph, 1, 6);``    ``addEdge(graph, 2, 6);``    ``addEdge(graph, 2, 3);``    ``addEdge(graph, 3, 6);``    ``addEdge(graph, 5, 4);``    ``addEdge(graph, 6, 5);``    ``addEdge(graph, 3, 4);``    ``addEdge(graph, 5, 3);`` ` `    ``// Sources``    ``int``[] sources = { 1, 5 };`` ` `    ``int` `S = sources.Length;`` ` `    ``nearestTown(graph, n, sources, S);``  ``}``}` `// This code is contributed by divyesh072019.`

## Javascript

 ``

Output

```1 0
2 1
3 1
4 1
5 0
6 1```

Complexity Analysis:

• Time Complexity: O(V+E)
• Auxiliary Space: O(V)

My Personal Notes arrow_drop_up