Given non-negative integers K, M, and an array arr[ ] consisting of N elements, the task is to find the Mth element of the array after K right rotations.
Examples:
Input: arr[] = {3, 4, 5, 23}, K = 2, M = 1
Output: 5
Explanation:
The array after first right rotation a1[ ] = {23, 3, 4, 5}
The array after second right rotation a2[ ] = {5, 23, 3, 4}
1st element after 2 right rotations is 5.
Input: arr[] = {1, 2, 3, 4, 5}, K = 3, M = 2
Output: 4
Explanation:
The array after 3 right rotations has 4 at its second position.
Naive Approach:
The simplest approach to solve the problem is to Perform Right Rotation operation K times and then find the Mth element of the final array.
Algorithm:
- Define a function called leftrotate that takes a vector and an integer d as input. The function should reverse the elements of the vector from the beginning up to index d, then from index d to the end, and finally the entire vector.
- Define a function called rightrotate that takes a vector and an integer d as input. The function should call leftrotate with the vector and the difference between the size of the vector and d as arguments.
- Define a function called getFirstElement that takes an integer array a, its size N, and two integers K and M as input. The function should do the following:
- Initialize a vector v with the elements of array a.
- Right rotate the vector v K times by calling rightrotate in a loop with v and the integer value 1 as arguments, K times.
- Return the Mth element of the rotated vector v.
- In the main function, initialize an integer array a and its size N, and two integers K and M with appropriate values.
- Call the function getFirstElement with an array a, N, K, and M as arguments and print the returned value.
Below is the implementation of the approach:
C++
#include <bits/stdc++.h>
using namespace std;
void leftrotate(vector< int >& v, int d)
{
reverse(v.begin(), v.begin() + d);
reverse(v.begin() + d, v.end());
reverse(v.begin(), v.end());
}
void rightrotate(vector< int >& v, int d)
{
leftrotate(v, v.size() - d);
}
int getFirstElement( int a[], int N, int K, int M)
{
vector< int > v;
for ( int i = 0; i < N; i++)
v.push_back(a[i]);
while (K--) {
rightrotate(v, 1);
}
return v[M - 1];
}
int main()
{
int a[] = { 1, 2, 3, 4, 5 };
int N = sizeof (a) / sizeof (a[0]);
int K = 3, M = 2;
cout << getFirstElement(a, N, K, M);
return 0;
}
|
Java
import java.util.Arrays;
public class GFG {
static void leftRotate( int [] arr, int d) {
int n = arr.length;
reverse(arr, 0 , d - 1 );
reverse(arr, d, n - 1 );
reverse(arr, 0 , n - 1 );
}
static void rightRotate( int [] arr, int d) {
int n = arr.length;
leftRotate(arr, n - d);
}
static void reverse( int [] arr, int start, int end) {
while (start < end) {
int temp = arr[start];
arr[start] = arr[end];
arr[end] = temp;
start++;
end--;
}
}
static int getFirstElement( int [] arr, int K, int M) {
int [] rotatedArray = Arrays.copyOf(arr, arr.length);
for ( int i = 0 ; i < K; i++) {
rightRotate(rotatedArray, 1 );
}
return rotatedArray[M - 1 ];
}
public static void main(String[] args) {
int [] arr = { 1 , 2 , 3 , 4 , 5 };
int K = 3 ;
int M = 2 ;
System.out.println(getFirstElement(arr, K, M));
}
}
|
Python3
def left_rotate(v, d):
v[:d] = v[:d][:: - 1 ]
v[d:] = v[d:][:: - 1 ]
v[:] = v[:: - 1 ]
def right_rotate(v, d):
left_rotate(v, len (v) - d)
def get_first_element(a, K, M):
v = list (a)
while K > 0 :
right_rotate(v, 1 )
K - = 1
return v[M - 1 ]
a = [ 1 , 2 , 3 , 4 , 5 ]
K = 3
M = 2
print (get_first_element(a, K, M))
|
C#
using System;
using System.Linq;
class GFG
{
static void leftrotate( ref int [] v, int d)
{
Array.Reverse(v, 0, d);
Array.Reverse(v, d, v.Length - d);
Array.Reverse(v);
}
static void reftrotate( ref int [] v, int d)
{
leftrotate( ref v, v.Length - d);
}
static int getFirstElement( int [] a, int K, int M)
{
int [] v = a.ToArray();
while (K > 0)
{
reftrotate( ref v, 1);
K--;
}
return v[M - 1];
}
static void Main( string [] args)
{
int [] a = { 1, 2, 3, 4, 5 };
int N = a.Length;
int K = 3, M = 2;
Console.WriteLine(getFirstElement(a, K, M));
}
}
|
Javascript
function leftrotate(v, d) {
const reversedFirstPart = v.slice(0, d).reverse();
const reversedSecondPart = v.slice(d).reverse();
const reversedArray = reversedFirstPart.concat(reversedSecondPart).reverse();
for (let i = 0; i < v.length; i++) {
v[i] = reversedArray[i];
}
}
function rightrotate(v, d) {
leftrotate(v, v.length - d);
}
function getFirstElement(a, N, K, M) {
let v = [];
for (let i = 0; i < N; i++) {
v.push(a[i]);
}
while (K--) {
rightrotate(v, 1);
}
return v[M - 1];
}
let a = [1, 2, 3, 4, 5];
let N = a.length;
let K = 3;
let M = 2;
console.log(getFirstElement(a, N, K, M));
|
Time Complexity: O(N * K)
Auxiliary Space: O(N)
Efficient Approach:
To optimize the problem, the following observations need to be made:
- If the array is rotated N times it returns the initial array again.
For example, a[ ] = {1, 2, 3, 4, 5}, K=5
Modified array after 5 right rotation a5[ ] = {1, 2, 3, 4, 5}.
- Therefore, the elements in the array after Kth rotation is the same as the element at index K%N in the original array.
- If K >= M, the Mth element of the array after K right rotations is
{ (N-K) + (M-1) } th element in the original array.
- If K < M, the Mth element of the array after K right rotations is:
(M – K – 1) th element in the original array.
Below is the implementation of the above approach:
C++
#include<bits/stdc++.h>
using namespace std;
int getFirstElement( int a[], int N,
int K, int M)
{
K %= N;
int index;
if (K >= M)
index = (N - K) + (M - 1);
else
index = (M - K - 1);
int result = a[index];
return result;
}
int main()
{
int a[] = { 1, 2, 3, 4, 5 };
int N = sizeof (a) / sizeof (a[0]);
int K = 3, M = 2;
cout << getFirstElement(a, N, K, M);
return 0;
}
|
Java
class GFG{
static int getFirstElement( int a[], int N,
int K, int M)
{
K %= N;
int index;
if (K >= M)
index = (N - K) + (M - 1 );
else
index = (M - K - 1 );
int result = a[index];
return result;
}
public static void main(String[] args)
{
int a[] = { 1 , 2 , 3 , 4 , 5 };
int N = 5 ;
int K = 3 , M = 2 ;
System.out.println(getFirstElement(a, N, K, M));
}
}
|
Python3
def getFirstElement(a, N, K, M):
K % = N
if (K > = M):
index = (N - K) + (M - 1 )
else :
index = (M - K - 1 )
result = a[index]
return result
if __name__ = = "__main__" :
a = [ 1 , 2 , 3 , 4 , 5 ]
N = len (a)
K , M = 3 , 2
print ( getFirstElement(a, N, K, M))
|
C#
using System;
class GFG{
static int getFirstElement( int []a, int N,
int K, int M)
{
K %= N;
int index;
if (K >= M)
index = (N - K) + (M - 1);
else
index = (M - K - 1);
int result = a[index];
return result;
}
public static void Main()
{
int []a = { 1, 2, 3, 4, 5 };
int N = 5;
int K = 3, M = 2;
Console.Write(getFirstElement(a, N, K, M));
}
}
|
Javascript
<script>
function getFirstElement(a, N,
K, M)
{
K %= N;
let index;
if (K >= M)
index = (N - K) + (M - 1);
else
index = (M - K - 1);
let result = a[index];
return result;
}
let a = [ 1, 2, 3, 4, 5 ];
let N = 5;
let K = 3, M = 2;
document.write(getFirstElement(a, N, K, M));
</script>
|
Time Complexity: O(1)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
16 Oct, 2023
Like Article
Save Article