Skip to content
Related Articles

Related Articles

Improve Article

Modular Exponentiation of Complex Numbers

  • Difficulty Level : Expert
  • Last Updated : 23 Aug, 2019

Given four integers A, B, K, M. The task is to find (A + iB)K % M which is a complex number too. A + iB represents a complex number.

Examples:

Input : A = 2, B = 3, K = 4, M = 5
Output: 1 + i*0

Input : A = 7, B = 3, K = 10, M = 97
Output: 25 + i*29

Prerequisite: Modular Exponentiation



Approach:
An efficient approach is similar to the modular exponentiation of a single number. Here, instead of a single we have two number A, B. So, pass a pair of integers as a parameter to the function instead of a single number.

Below is the implementation of the above approach :

C++




#include <bits/stdc++.h>
using namespace std;
  
// Function to multiply two complex numbers modulo M
pair<int, int> Multiply (pair<int, int> p, pair<int, int> q,
                                                    int M)
{
    // Multiplication of two complex numbers is 
    // (a + ib)(c + id) = (ac - bd) + i(ad + bc)
      
    int x = ((p.first * q.first) % M - (p.second * 
                                    q.second) % M + M) % M;
      
    int y = ((p.first * q.second) % M + (p.second * 
                                          q.first) % M) %M;
  
    // Return the multiplied value
    return {x, y};
}
  
  
// Function to calculate the complex modular exponentiation
pair<int, int> compPow(pair<int, int> complex, int k, int M)
{
    // Here, res is initialised to (1 + i0)
    pair<int, int> res = { 1, 0 }; 
      
    while (k > 0) 
    {
        // If k is odd
        if (k & 1)
        {
            // Multiply 'complex' with 'res'
            res = Multiply(res, complex, M); 
        }
          
        // Make complex as complex*complex
        complex = Multiply(complex, complex, M);
          
        // Make k as k/2
        k = k >> 1; 
    }
      
    //Return the required answer
    return res;
}
  
// Driver code
int main()
{
  
    int A = 7, B = 3, k = 10, M = 97;
      
    // Function call
    pair<int, int> ans = compPow({A, B}, k, M);
      
    cout << ans.first << " + i" << ans.second;    
      
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
  
class GFG 
{
static class pair 
    int first, second; 
    public pair(int first, int second) 
    
        this.first = first; 
        this.second = second; 
    
  
// Function to multiply two complex numbers modulo M
static pair Multiply (pair p, pair q, int M)
{
    // Multiplication of two complex numbers is 
    // (a + ib)(c + id) = (ac - bd) + i(ad + bc)
      
    int x = ((p.first * q.first) % M -
             (p.second * q.second) % M + M) % M;
      
    int y = ((p.first * q.second) % M + 
             (p.second * q.first) % M) % M;
  
    // Return the multiplied value
    return new pair(x, y);
}
  
  
// Function to calculate the 
// complex modular exponentiation
static pair compPow(pair complex, int k, int M)
{
    // Here, res is initialised to (1 + i0)
    pair res = new pair(1, 0 ); 
      
    while (k > 0
    {
        // If k is odd
        if (k % 2 == 1)
        {
            // Multiply 'complex' with 'res'
            res = Multiply(res, complex, M); 
        }
          
        // Make complex as complex*complex
        complex = Multiply(complex, complex, M);
          
        // Make k as k/2
        k = k >> 1
    }
      
    // Return the required answer
    return res;
}
  
// Driver code
public static void main(String[] args)
{
    int A = 7, B = 3, k = 10, M = 97;
      
    // Function call
    pair ans = compPow(new pair(A, B), k, M);
      
    System.out.println(ans.first + " + i"
                       ans.second); 
}
}
  
// This code is contributed by PrinciRaj1992

Python3




# Python3 implementation of the approach
  
# Function to multiply two complex numbers modulo M
def Multiply (p, q, M):
      
    # Multiplication of two complex numbers is 
    # (a + ib)(c + id) = (ac - bd) + i(ad + bc)
    x = ((p[0] * q[0]) % M - \
         (p[1] * q[1]) % M + M) % M
      
    y = ((p[0] * q[1]) % M + \
         (p[1] * q[0]) % M) %M
  
    # Return the multiplied value
    return [x, y]
  
# Function to calculate the
# complex modular exponentiation
def compPow(complex, k, M):
      
    # Here, res is initialised to (1 + i0)
    res = [1, 0
      
    while (k > 0):
          
        # If k is odd
        if (k & 1):
              
            # Multiply 'complex' with 'res'
            res = Multiply(res, complex, M)
          
        # Make complex as complex*complex
        complex = Multiply(complex, complex, M)
          
        # Make k as k/2
        k = k >> 1
      
    # Return the required answer
    return res
  
# Driver code
if __name__ == '__main__':
    A = 7
    B = 3
    k = 10
    M = 97
      
    # Function call
    ans = compPow([A, B], k, M)
      
    print(ans[0], "+ i", end = "")
    print(ans[1])
      
# This code is contributed by
# Surendra_Gangwar

C#




// C# implementation of the approach
using System;
      
class GFG 
{
public class pair 
    public int first, second; 
    public pair(int first, int second) 
    
        this.first = first; 
        this.second = second; 
    
  
// Function to multiply two complex numbers modulo M
static pair Multiply (pair p, pair q, int M)
{
    // Multiplication of two complex numbers is 
    // (a + ib)(c + id) = (ac - bd) + i(ad + bc)
      
    int x = ((p.first * q.first) % M -
             (p.second * q.second) % M + M) % M;
      
    int y = ((p.first * q.second) % M + 
             (p.second * q.first) % M) % M;
  
    // Return the multiplied value
    return new pair(x, y);
}
  
  
// Function to calculate the 
// complex modular exponentiation
static pair compPow(pair complex, int k, int M)
{
    // Here, res is initialised to (1 + i0)
    pair res = new pair(1, 0 ); 
      
    while (k > 0) 
    {
        // If k is odd
        if (k % 2 == 1)
        {
            // Multiply 'complex' with 'res'
            res = Multiply(res, complex, M); 
        }
          
        // Make complex as complex*complex
        complex = Multiply(complex, complex, M);
          
        // Make k as k/2
        k = k >> 1; 
    }
      
    // Return the required answer
    return res;
}
  
// Driver code
public static void Main(String[] args)
{
    int A = 7, B = 3, k = 10, M = 97;
      
    // Function call
    pair ans = compPow(new pair(A, B), k, M);
      
    Console.WriteLine(ans.first + " + i"
                      ans.second); 
}
}
  
// This code is contributed by 29AjayKumar
Output:
25 + i29

Time complexity: O(log k).

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :