Modular Exponentiation of Complex Numbers

Given four integers A, B, K, M. The task is to find (A + iB)K % M which is a complex number too. A + iB represents a complex number.

Examples:

Input : A = 2, B = 3, K = 4, M = 5
Output: 1 + i*0

Input : A = 7, B = 3, K = 10, M = 97
Output: 25 + i*29

Prerequisite: Modular Exponentiation



Approach:
An efficient approach is similar to the modular exponentiation of a single number. Here, instead of a single we have two number A, B. So, pass a pair of integers as a parameter to the function instead of a single number.

Below is the implementation of the above approach :

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

#include <bits/stdc++.h>
using namespace std;
  
// Function to multiply two complex numbers modulo M
pair<int, int> Multiply (pair<int, int> p, pair<int, int> q,
                                                    int M)
{
    // Multiplication of two complex numbers is 
    // (a + ib)(c + id) = (ac - bd) + i(ad + bc)
      
    int x = ((p.first * q.first) % M - (p.second * 
                                    q.second) % M + M) % M;
      
    int y = ((p.first * q.second) % M + (p.second * 
                                          q.first) % M) %M;
  
    // Return the multiplied value
    return {x, y};
}
  
  
// Function to calculate the complex modular exponentiation
pair<int, int> compPow(pair<int, int> complex, int k, int M)
{
    // Here, res is initialised to (1 + i0)
    pair<int, int> res = { 1, 0 }; 
      
    while (k > 0) 
    {
        // If k is odd
        if (k & 1)
        {
            // Multiply 'complex' with 'res'
            res = Multiply(res, complex, M); 
        }
          
        // Make complex as complex*complex
        complex = Multiply(complex, complex, M);
          
        // Make k as k/2
        k = k >> 1; 
    }
      
    //Return the required answer
    return res;
}
  
// Driver code
int main()
{
  
    int A = 7, B = 3, k = 10, M = 97;
      
    // Function call
    pair<int, int> ans = compPow({A, B}, k, M);
      
    cout << ans.first << " + i" << ans.second;    
      
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.util.*;
  
class GFG 
{
static class pair 
    int first, second; 
    public pair(int first, int second) 
    
        this.first = first; 
        this.second = second; 
    
  
// Function to multiply two complex numbers modulo M
static pair Multiply (pair p, pair q, int M)
{
    // Multiplication of two complex numbers is 
    // (a + ib)(c + id) = (ac - bd) + i(ad + bc)
      
    int x = ((p.first * q.first) % M -
             (p.second * q.second) % M + M) % M;
      
    int y = ((p.first * q.second) % M + 
             (p.second * q.first) % M) % M;
  
    // Return the multiplied value
    return new pair(x, y);
}
  
  
// Function to calculate the 
// complex modular exponentiation
static pair compPow(pair complex, int k, int M)
{
    // Here, res is initialised to (1 + i0)
    pair res = new pair(1, 0 ); 
      
    while (k > 0
    {
        // If k is odd
        if (k % 2 == 1)
        {
            // Multiply 'complex' with 'res'
            res = Multiply(res, complex, M); 
        }
          
        // Make complex as complex*complex
        complex = Multiply(complex, complex, M);
          
        // Make k as k/2
        k = k >> 1
    }
      
    // Return the required answer
    return res;
}
  
// Driver code
public static void main(String[] args)
{
    int A = 7, B = 3, k = 10, M = 97;
      
    // Function call
    pair ans = compPow(new pair(A, B), k, M);
      
    System.out.println(ans.first + " + i"
                       ans.second); 
}
}
  
// This code is contributed by PrinciRaj1992

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
  
# Function to multiply two complex numbers modulo M
def Multiply (p, q, M):
      
    # Multiplication of two complex numbers is 
    # (a + ib)(c + id) = (ac - bd) + i(ad + bc)
    x = ((p[0] * q[0]) % M - \
         (p[1] * q[1]) % M + M) % M
      
    y = ((p[0] * q[1]) % M + \
         (p[1] * q[0]) % M) %M
  
    # Return the multiplied value
    return [x, y]
  
# Function to calculate the
# complex modular exponentiation
def compPow(complex, k, M):
      
    # Here, res is initialised to (1 + i0)
    res = [1, 0
      
    while (k > 0):
          
        # If k is odd
        if (k & 1):
              
            # Multiply 'complex' with 'res'
            res = Multiply(res, complex, M)
          
        # Make complex as complex*complex
        complex = Multiply(complex, complex, M)
          
        # Make k as k/2
        k = k >> 1
      
    # Return the required answer
    return res
  
# Driver code
if __name__ == '__main__':
    A = 7
    B = 3
    k = 10
    M = 97
      
    # Function call
    ans = compPow([A, B], k, M)
      
    print(ans[0], "+ i", end = "")
    print(ans[1])
      
# This code is contributed by
# Surendra_Gangwar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
      
class GFG 
{
public class pair 
    public int first, second; 
    public pair(int first, int second) 
    
        this.first = first; 
        this.second = second; 
    
  
// Function to multiply two complex numbers modulo M
static pair Multiply (pair p, pair q, int M)
{
    // Multiplication of two complex numbers is 
    // (a + ib)(c + id) = (ac - bd) + i(ad + bc)
      
    int x = ((p.first * q.first) % M -
             (p.second * q.second) % M + M) % M;
      
    int y = ((p.first * q.second) % M + 
             (p.second * q.first) % M) % M;
  
    // Return the multiplied value
    return new pair(x, y);
}
  
  
// Function to calculate the 
// complex modular exponentiation
static pair compPow(pair complex, int k, int M)
{
    // Here, res is initialised to (1 + i0)
    pair res = new pair(1, 0 ); 
      
    while (k > 0) 
    {
        // If k is odd
        if (k % 2 == 1)
        {
            // Multiply 'complex' with 'res'
            res = Multiply(res, complex, M); 
        }
          
        // Make complex as complex*complex
        complex = Multiply(complex, complex, M);
          
        // Make k as k/2
        k = k >> 1; 
    }
      
    // Return the required answer
    return res;
}
  
// Driver code
public static void Main(String[] args)
{
    int A = 7, B = 3, k = 10, M = 97;
      
    // Function call
    pair ans = compPow(new pair(A, B), k, M);
      
    Console.WriteLine(ans.first + " + i"
                      ans.second); 
}
}
  
// This code is contributed by 29AjayKumar

chevron_right


Output:

25 + i29

Time complexity: O(log k).

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.