Modify Binary Tree by replacing each node with the sum of its Preorder Predecessor and Successor
Given a binary tree consisting of N nodes, the task is to replace each node in the binary tree with the sum of its preorder predecessor and preorder successor.
Examples:
Input:
2
/ \
3 4
/ \ / \
6 5 7 8
Output:
3
/ \
8 12
/ \ / \
8 10 12 7
Explanation:
- For Node 2: Preorder predecessor = 0 (as preorder predecessor is not present), preorder successor = 3. Sum = 3.
- For Node 3: Preorder predecessor = 2, preorder successor = 6. Sum = 8.
- For Node 6: Preorder predecessor = 3, preorder successor = 5. Sum = 8.
- For Node 5: Preorder predecessor = 6, preorder successor = 4. Sum = 10.
- For Node 4: Preorder predecessor = 5, preorder successor = 7. Sum = 12.
- For Node 7: Preorder predecessor = 4, preorder successor = 8. Sum = 12.
- For Node 8: Preorder predecessor = 7, preorder successor = 0 (as preorder successor is not present). Sum = 7.
Input:
1
/ \
2 3
Output:
2
/ \
4 2
Approach: The given problem can be solved by storing the preorder traversal of the tree in an auxiliary array and then replace each node with the sum of the preorder predecessor and preorder successor. Follow the below steps to solve the problem:
- Declare a function, say replaceNode(root, A[], idx) to perform the preorder traversal on the tree with the starting index as i and perform the following steps:
- If the root node is NULL, then return from the function.
- Replace the value of the current node as V[i – 1] + V[i + 1] as for element V[i], the values V[i – 1] and V[i + 1] are its preorder predecessor and preorder successor respectively.
- Recursively call for the function replaceNode(root->left, A[], idx + 1) and replaceNode(root->right, A[], idx + 1).
- Initialize a vector V that stores the preorder traversal of the given tree.
- Store 0 at index 0 as preorder predecessor of the leftmost leaf node doesn’t exist.
- Perform the preorder traversal on the given tree and store the preorder traversal in vector V.
- Store 0 at the end of the vector as preorder successor of the rightmost leaf node is not present.
- Call the function replaceNode(root, A[], 1) to replace each node with the required sum.
- After completing the above steps, print the preorder of the modified tree.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Node of a binary tree struct Node { int data; struct Node *left, *right; }; // Function to generate a new node struct Node* getnew( int data) { // Allocate node struct Node* newnode = ( struct Node*) malloc ( sizeof ( struct Node)); // Assign the data value newnode->data = data; newnode->left = newnode->right = NULL; return newnode; } // Function to store Preorder Traversal // of the binary tree in the vector V void StorePreorderTraversal( struct Node* root, vector< int >& v) { // If root is NULL, then return if (root == NULL) return ; // Store the root's data in V v.push_back(root->data); // Recur on the left subtree StorePreorderTraversal( root->left, v); // Recur on right subtree StorePreorderTraversal( root->right, v); } // Function to replace each node of a // Binary Tree with the sum of its // preorder predecessor and successor void ReplaceNodeWithSum( struct Node* root, vector< int >& v, int & i) { // If root does not exist if (root == NULL) return ; // Update the data present in the // root by the sum of its preorder // predecessor and successor root->data = v[i - 1] + v[i + 1]; // Increment index 'i' i++; // Recur on the left subtree ReplaceNodeWithSum(root->left, v, i); // Recur on the right subtree ReplaceNodeWithSum(root->right, v, i); } // Utility function to replace each // node of a binary tree with the // sum of its preorder predecessor // and successor void ReplaceNodeWithSumUtil( struct Node* root) { // If tree is empty, then return if (root == NULL) return ; vector< int > v; // Stores the value of preorder // predecessor for root node v.push_back(0); // Store the preorder // traversal of the tree in V StorePreorderTraversal(root, v); // Store the value of preorder // successor for rightmost leaf v.push_back(0); // Replace each node // with the required sum int i = 1; // Function call to update // the values of the node ReplaceNodeWithSum(root, v, i); } // Function to print the preorder // traversal of a binary tree void PreorderTraversal( struct Node* root) { // If root is NULL if (root == NULL) return ; // Print the data of node cout << root->data << " " ; // Recur on the left subtree PreorderTraversal(root->left); // Recur on the right subtree PreorderTraversal(root->right); } // Driver Code int main() { // Binary Tree struct Node* root = getnew(2); root->left = getnew(3); root->right = getnew(4); root->left->left = getnew(6); root->left->right = getnew(5); root->right->left = getnew(7); root->right->right = getnew(8); // Print the preorder traversal // of the original tree cout << "Preorder Traversal before" << " modification of tree: " ; PreorderTraversal(root); ReplaceNodeWithSumUtil(root); // Print the preorder traversal // of the modified tree cout << "\nPreorder Traversal after " << "modification of tree: " ; PreorderTraversal(root); return 0; } |
Java
// Java program for the above approach import java.util.Vector; class GFG{ // Node of a binary tree static class Node { int data; Node left, right; } // INT class static class INT { int data; } // Function to get a new node // of a binary tree static Node getNode( int data) { // Allocate node Node new_node = new Node(); // Put in the data; new_node.data = data; new_node.left = new_node.right = null ; return new_node; } // Function to print the preorder traversal // of a binary tree static void preorderTraversal(Node root) { // If root is null if (root == null ) return ; // First print the data of node System.out.print(root.data + " " ); // Then recur on left subtree preorderTraversal(root.left); // Now recur on right subtree preorderTraversal(root.right); } // Function to replace each node with the sum of its // preorder predecessor and successor static void replaceNodeWithSum(Node root, Vector<Integer> V, INT i) { // If root is null if (root == null ) return ; // Replace node's data with the sum of its // preorder predecessor and successor root.data = V.get(i.data - 1 ) + V.get(i.data + 1 ); // Move 'i' to point to the next 'V' element i.data++; // First recur on left child replaceNodeWithSum(root.left, V, i); // Now recur on right child replaceNodeWithSum(root.right, V, i); } // Function to store the preorder traversal // of the binary tree in V static void storePreorderTraversal(Node root, Vector<Integer> V) { // If root is null if (root == null ) return ; // Then store the root's data in 'V' V.add(root.data); // First recur on left child storePreorderTraversal(root.left, V); // Now recur on right child storePreorderTraversal(root.right, V); } // Utility function to replace each node in binary // tree with the sum of its preorder predecessor // and successor static void replaceNodeWithSumUtil(Node root) { // If tree is empty if (root == null ) return ; Vector<Integer> V = new Vector<Integer>(); // Store the value of preorder predecessor // for the leftmost leaf V.add( 0 ); // Store the preorder traversal of the tree in V storePreorderTraversal(root, V); // Store the value of preorder successor // for the rightmost leaf V.add( 0 ); // Replace each node with the required sum INT i = new INT(); i.data = 1 ; replaceNodeWithSum(root, V, i); } // Driver code public static void main(String[] args) { // Binary tree formation Node root = getNode( 2 ); root.left = getNode( 3 ); root.right = getNode( 4 ); root.left.left = getNode( 6 ); root.left.right = getNode( 5 ); root.right.left = getNode( 7 ); root.right.right = getNode( 8 ); // Print the preorder traversal of the original tree System.out.print( "Preorder Transversal before " + "modification of tree:\n" ); preorderTraversal(root); replaceNodeWithSumUtil(root); // Print the preorder traversal of the modification // tree System.out.print( "\nPreorder Transversal after " + "modification of tree:\n" ); preorderTraversal(root); } } // This code is contributed by abhinavjain194 |
Python3
# Python3 program for the above approach # Node of a binary tree class Node: def __init__( self , d): self .data = d self .left = None self .right = None # Function to store Preorder Traversal # of the binary tree in the vector V def StorePreorderTraversal(root): global v # If root is NULL, then return if (root = = None ): return # Store the root's data in V v.append(root.data) # Recur on the left subtree StorePreorderTraversal(root.left) # Recur on right subtree StorePreorderTraversal(root.right) # Function to replace each node of a # Binary Tree with the sum of its # preorder predecessor and successor def ReplaceNodeWithSum(root): global v, i # If root does not exist if (root = = None ): return # Update the data present in the # root by the sum of its preorder # predecessor and successor root.data = v[i - 1 ] + v[i + 1 ] # Increment index 'i' i + = 1 # Recur on the left subtree ReplaceNodeWithSum(root.left) # Recur on the right subtree ReplaceNodeWithSum(root.right) # Utility function to replace each # node of a binary tree with the # sum of its preorder predecessor # and successor def ReplaceNodeWithSumUtil(root): global v, i # If tree is empty, then return if (root = = None ): return v.clear() # Stores the value of preorder # predecessor for root node v.append( 0 ) # Store the preorder # traversal of the tree in V StorePreorderTraversal(root) # Store the value of preorder # successor for rightmost leaf v.append( 0 ) # Replace each node # with the required sum i = 1 # Function call to update # the values of the node ReplaceNodeWithSum(root) # Function to print the preorder # traversal of a binary tree def PreorderTraversal(root): # If root is NULL if (root = = None ): return # Print the data of node print (root.data, end = " " ) # Recur on the left subtree PreorderTraversal(root.left) # Recur on the right subtree PreorderTraversal(root.right) # Driver Code if __name__ = = '__main__' : # Binary Tree v, i = [], 0 root = Node( 2 ) root.left = Node( 3 ) root.right = Node( 4 ) root.left.left = Node( 6 ) root.left.right = Node( 5 ) root.right.left = Node( 7 ) root.right.right = Node( 8 ) # Print the preorder traversal # of the original tree print ( "Preorder Traversal before " "modification of tree: " , end = "") PreorderTraversal(root) ReplaceNodeWithSumUtil(root) # Print the preorder traversal # of the modified tree print ( "\nPreorder Traversal after " "modification of tree: " , end = "") PreorderTraversal(root) # This code is contributed by mohit kumar 29 |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG { // TreeNode class class Node { public int data; public Node left, right; }; static int i; // Function to get a new node // of a binary tree static Node getNode( int data) { // Allocate node Node new_node = new Node(); // Put in the data; new_node.data = data; new_node.left = new_node.right = null ; return new_node; } // Function to print the preorder traversal // of a binary tree static void preorderTraversal(Node root) { // If root is null if (root == null ) return ; // First print the data of node Console.Write(root.data + " " ); // Then recur on left subtree preorderTraversal(root.left); // Now recur on right subtree preorderTraversal(root.right); } // Function to replace each node with the sum of its // preorder predecessor and successor static void replaceNodeWithSum(Node root, List< int > V) { // If root is null if (root == null ) return ; // Replace node's data with the sum of its // preorder predecessor and successor root.data = V[i - 1] + V[i + 1]; // Move 'i' to point to the next 'V' element i++; // First recur on left child replaceNodeWithSum(root.left, V); // Now recur on right child replaceNodeWithSum(root.right, V); } // Function to store the preorder traversal // of the binary tree in V static void storePreorderTraversal(Node root, List< int > V) { // If root is null if (root == null ) return ; // Then store the root's data in 'V' V.Add(root.data); // First recur on left child storePreorderTraversal(root.left, V); // Now recur on right child storePreorderTraversal(root.right, V); } // Utility function to replace each node in binary // tree with the sum of its preorder predecessor // and successor static void replaceNodeWithSumUtil(Node root) { // If tree is empty if (root == null ) return ; List< int > V = new List< int >(); // Store the value of preorder predecessor // for the leftmost leaf V.Add(0); // Store the preorder traversal of the tree in V storePreorderTraversal(root, V); // Store the value of preorder successor // for the rightmost leaf V.Add(0); // Replace each node with the required sum i = 1; replaceNodeWithSum(root, V); } static void Main() { // Binary tree formation Node root = getNode(2); root.left = getNode(3); root.right = getNode(4); root.left.left = getNode(6); root.left.right = getNode(5); root.right.left = getNode(7); root.right.right = getNode(8); // Print the preorder traversal of the original tree Console.Write( "Preorder Transversal before " + "modification of tree: " ); preorderTraversal(root); replaceNodeWithSumUtil(root); // Print the preorder traversal of the modification // tree Console.Write( "\nPreorder Transversal after " + "modification of tree: " ); preorderTraversal(root); } } |
Javascript
<script> // Javascript program for the above approach class Node { constructor(data) { this .left = null ; this .right = null ; this .data = data; } } // Function to get a new node // of a binary tree function getNode(data) { // Allocate node let new_node = new Node(data); return new_node; } // Function to print the preorder traversal // of a binary tree function preorderTraversal(root) { // If root is null if (root == null ) return ; // First print the data of node document.write(root.data + " " ); // Then recur on left subtree preorderTraversal(root.left); // Now recur on right subtree preorderTraversal(root.right); } // Function to replace each node with the sum of its // preorder predecessor and successor function replaceNodeWithSum(root, V) { // If root is null if (root == null ) return ; // Replace node's data with the sum of its // preorder predecessor and successor root.data = V[data - 1] + V[data + 1]; // Move 'i' to point to the next 'V' element data++; // First recur on left child replaceNodeWithSum(root.left, V); // Now recur on right child replaceNodeWithSum(root.right, V); } // Function to store the preorder traversal // of the binary tree in V function storePreorderTraversal(root, V) { // If root is null if (root == null ) return ; // Then store the root's data in 'V' V.push(root.data); // First recur on left child storePreorderTraversal(root.left, V); // Now recur on right child storePreorderTraversal(root.right, V); } // Utility function to replace each node in binary // tree with the sum of its preorder predecessor // and successor function replaceNodeWithSumUtil(root) { // If tree is empty if (root == null ) return ; let V = []; // Store the value of preorder predecessor // for the leftmost leaf V.push(0); // Store the preorder traversal of the tree in V storePreorderTraversal(root, V); // Store the value of preorder successor // for the rightmost leaf V.push(0); data = 1; replaceNodeWithSum(root, V); } // Binary tree formation let root = getNode(2); root.left = getNode(3); root.right = getNode(4); root.left.left = getNode(6); root.left.right = getNode(5); root.right.left = getNode(7); root.right.right = getNode(8); // Print the preorder traversal of the original tree document.write( "Preorder Transversal before " + "modification of tree : " ); preorderTraversal(root); replaceNodeWithSumUtil(root); // Print the preorder traversal of the modification // tree document.write( "</br>" + "Preorder Transversal after " + "modification of tree : " ); preorderTraversal(root); </script> |
Preorder Traversal before modification of tree: 2 3 6 5 4 7 8 Preorder Traversal after modification of tree: 3 8 8 10 12 12 7
Time Complexity: O(N)
Auxiliary Space: O(N)
Please Login to comment...