Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

ML | Types of Learning – Part 2

  • Difficulty Level : Medium
  • Last Updated : 22 Sep, 2021

Unsupervised Learning : 
It’s a type of learning where we don’t give a target to our model while training i.e. training model has only input parameter values. The model by itself has to find which way it can learn. Data-set in Figure A is mall data that contains information of its clients that subscribe to them. Once subscribed they are provided a membership card and so the mall has complete information about the customer and his/her every purchase. Now using this data and unsupervised learning techniques, the mall can easily group clients based on the parameters we are feeding in. 

Training data we are feeding is – 

  • Unstructured data: May contain noisy(meaningless) data, missing values, or unknown data
  • Unlabeled data: Data only contains a value for input parameters, there is no targeted value(output). It is easy to collect as compared to labeled one in the Supervised approach.


Types of Unsupervised Learning:- 

  • Clustering: Broadly this technique is applied to group data based on different patterns, our machine model finds. For example, in the above figure, we are not given an output parameter value, so this technique will be used to group clients based on the input parameters provided by our data.
  • Association: This technique is a rule-based ML technique that finds out some very useful relations between parameters of a large data set. For e.g. shopping stores use algorithms based on this technique to find out the relationship between the sale of one product w.r.t to others sales based on customer behavior. Once trained well, such models can be used to increase their sales by planning different offers.

Some algorithms: 

  • K-Means Clustering
  • DBSCAN – Density-Based Spatial Clustering of Applications with Noise
  • BIRCH – Balanced Iterative Reducing and Clustering using Hierarchies
  • Hierarchical Clustering

  Semi-supervised Learning: 
As the name suggests, its working lies between Supervised and Unsupervised techniques. We use these techniques when we are dealing with data that is a little bit labeled and the rest large portion of it is unlabeled. We can use the unsupervised techniques to predict labels and then feed these labels to supervised techniques. This technique is mostly applicable in the case of image data sets where usually all images are not labeled. 

Reinforcement Learning: 
In this technique, the model keeps on increasing its performance using Reward Feedback to learn the behavior or pattern. These algorithms are specific to a particular problem e.g. Google Self Driving car, AlphaGo where a bot competes with humans and even itself to getting better and better performers of Go Game. Each time we feed in data, they learn and add the data to its knowledge that is training data. So, the more it learns the better it gets trained and hence experienced. 

  • Agents observe input.
  • An agent performs an action by making some decisions.
  • After its performance, an agent receives a reward and accordingly reinforces and the model stores in state-action pair of information.
  • Temporal Difference (TD)
  • Q-Learning
  • Deep Adversarial Networks

My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!