ML | sklearn.linear_model.LinearRegression() in Python

This is Ordinary least squares Linear Regression from sklearn.linear_module.
Syntax :
sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=1):

Parameters :

fit_intercept : [boolean, Default is True] Whether to calculate intercept for the model.
normalize : [boolean, Default is False] Normalisation before regression.
copy_X : [boolean, Default is True] If true, make a copy of X else overwritten.
n_jobs : [int, Default is 1] If -1 all CPU’s are used. This will speedup the working for large datasets to process.

In the given dataset, R&D Spend, Administration Cost and Marketing Spend of 50 Companies are given along with the profit earned. The target is to prepare ML model which can predict the profit value of a company if the value of its R&D Spend, Administration Cost and Marketing Spend are given.

To download dataset click here.

Code: Use of Linear Regression to predict the Companies Profit

filter_none

edit
close

play_arrow

link
brightness_4
code

# Importing the libraries
import numpy as np
import pandas as pd
   
# Importing the dataset
   
print ("Dataset.head() \n ", dataset.head())
   
# Input values
x = dataset.iloc[:, :-1].values
print("\nFirst 10 Input Values : \n", x[0:10, :])
  

chevron_right


 
 

filter_none

edit
close

play_arrow

link
brightness_4
code

print ("Dataset Info : \n")
print (dataset.info())

chevron_right


filter_none

edit
close

play_arrow

link
brightness_4
code

# Input values
x = dataset.iloc[:, :-1].values
print("\nFirst 10 Input Values : \n", x[0:10, :])
   
   
# Output values
y = dataset.iloc[:, 3].values 
y1 = y
y1 = y1.reshape(-1, 1)
print("\n\nFirst 10 Output true value : \n", y1[0:10, :])

chevron_right



 

filter_none

edit
close

play_arrow

link
brightness_4
code

# Dividing input and output data to train and test data
# Training : Testing = 80 : 20
from sklearn.cross_validation import train_test_split
xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size = 0.2
                                                     random_state = 0)
   
# Feature Scaling
# Multilinear regression takes care of Feature Scaling
# So we need not do it manually 
   
   
# Fitting Multi Linear regression model to training model
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(xtrain, ytrain)
   
# predicting the test set results
y_pred = regressor.predict(xtest)
   
y_pred1 = y_pred
y_pred1 = y_pred1.reshape(-1,1)
   
print("\n   RESULT OF LINEAR REGRESSION PREDICTION : ")
print ("\nFirst 10 Predicted value : \n", y_pred1[0:10, :])

chevron_right




My Personal Notes arrow_drop_up

Aspire to Inspire before I expire

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.