Mirror of a point through a 3 D plane

Given a point(x, y, z) in 3-D and coefficients of the equation of plane, the task is to find the mirror image of that point through the given plane.

Examples:

Input: a = 1, b = -2, c = 0, d = 0, x = -1, y = 3, z = 4
Output: x3 = 1.7999999999999998, y3 = -2.5999999999999996, z3 = 4.0



Input: a = 2, b = -1, c = 1, d = 3, x = 1, y = 3, z = 4
Output: x3 = -3.0, y3 = 5.0, z3 = 2.0

Approach: Equation of plane is as ax + by + cz + d = 0. Therefore, direction ratios of the normal to the plane are (a, b, c). Let N be the foot of perpendicular from given point to the given plane so, line PN has directed ratios (a, b, c) and it passes through P(x1, y1, z1).

The equation of line PN will be as:-



(x - x1) / a = (y - y1) / b = (z - z1) / c = k

Hence any point on line PN can be written as:-

x = a*k + x1
y = b*k + y1
z = c*k + z1

since N lies in both line and plane so will satisfy(ax + by + cz + d = 0).

=>a * (a * k + x1) + b * (b * k + y1) + c * (c * k + z1) + d = 0.
=>a * a * k + a * x1 + b * b * k + b * y1 + c * c * k + c * z1 + d = 0.
=>(a * a + b * b + c * c)k = -a * x1 - b * y1 - c * z1 - d.
=>k = (-a * x1 - b * y1 - c * z1 - d) / (a * a + b * b + c * c).

Now, the coordinates of Point N in terms of k will be:-

x2 = a * k + x1
y2 = b * k + y1
z2 = c * k + z1

Since, Point N(x2, y2, z2) is midpoint of point P(x1, y1, z1) and point Q(x3, y3, z3), coordinates of Point Q are:-

=> x3 = 2 * x2 - x1
=> y3 = 2 * y2 - y1
=> z3 = 2 * z2 - z1

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find 
// Mirror of a point  
// through a 3 D plane
#include <bits/stdc++.h> 
#include<math.h>
#include <iostream>
#include <iomanip>
  
using namespace std;
  
// Function to mirror image 
void mirror_point(float a, float b,  
                  float c, float d,  
                  float x1, float y1, 
                  float z1)
{
    float k = (-a * x1 - b *  
                y1 - c * z1 - d) /  
        (float)(a * a + b * b + c * c); 
    float x2 = a * k + x1; 
    float y2 = b * k + y1; 
    float z2 = c * k + z1; 
    float x3 = 2 * x2 - x1; 
    float y3 = 2 * y2 - y1; 
    float z3 = 2 * z2 - z1; 
        
    std::cout << std::fixed;
    std::cout << std::setprecision(1);
    cout << " x3 = " << x3;  
    cout << " y3 = " << y3;  
    cout << " z3 = " << z3;
}
  
// Driver Code 
int main()
{
    float a = 1; 
    float b = -2; 
    float c = 0; 
    float d = 0; 
    float x1 = -1; 
    float y1 = 3; 
    float z1 = 4; 
    
    // function call 
    mirror_point(a, b, c, d,  
                 x1, y1, z1);
    return 0;
}
// This code is contributed 
// by Amber_Saxena.

chevron_right


C

filter_none

edit
close

play_arrow

link
brightness_4
code

// C program to find
// Mirror of a point 
// through a 3 D plane
#include<stdio.h>
      
// Function to mirror image
void mirror_point(float a, float b, 
                  float c, float d, 
                  float x1, float y1,
                  float z1)
{
    float k = (-a * x1 - b * 
                y1 - c * z1 - d) / 
        (float)(a * a + b * b + c * c);
    float x2 = a * k + x1;
    float y2 = b * k + y1;
    float z2 = c * k + z1;
    float x3 = 2 * x2 - x1;
    float y3 = 2 * y2 - y1;
    float z3 = 2 * z2 - z1;
      
    printf("x3 = %.1f ", x3); 
    printf("y3 = %.1f ", y3); 
    printf("z3 = %.1f ", z3);
}
  
// Driver Code 
int main()
{
    float a = 1;
    float b = -2;
    float c = 0;
    float d = 0;
    float x1 = -1;
    float y1 = 3;
    float z1 = 4;
  
    // function call
    mirror_point(a, b, c, d, 
                 x1, y1, z1);
}
  
// This code is contributed 
// by Amber_Saxena.

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find
// Mirror of a point 
// through a 3 D plane
import java.io.*;
  
class GFG 
{
      
// Function to mirror image
static void mirror_point(int a, int b,  
                         int c, int d, 
                         int x1, int y1,
                         int z1)
{
    float k = (-a * x1 - b * y1 - c * z1 - d) / 
        (float)(a * a + b * b + c * c);
    float x2 = a * k + x1;
    float y2 = b * k + y1;
    float z2 = c * k + z1;
    float x3 = 2 * x2 - x1;
    float y3 = 2 * y2 - y1;
    float z3 = 2 * z2 - z1;
      
    System.out.print("x3 = " + x3 + " "); 
    System.out.print("y3 = " + y3 + " "); 
    System.out.print("z3 = " + z3 + " ");
}
  
// Driver Code 
public static void main(String[] args)
{
    int a = 1;
    int b = -2;
    int c = 0;
    int d = 0;
    int x1 = -1;
    int y1 = 3;
    int z1 = 4;
  
    // function call
    mirror_point(a, b, c, d, 
                 x1, y1, z1) ;
}
}
  
// This code is contributed
// by inder_verma

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Function to mirror image
def mirror_point(a, b, c, d, x1, y1, z1): 
       
    k =(-a * x1-b * y1-c * z1-d)/float((a * a + b * b + c * c))
    x2 = a * k + x1
    y2 = b * k + y1
    z2 = c * k + z1
    x3 = 2 * x2-x1
    y3 = 2 * y2-y1
    z3 = 2 * z2-z1
    print "x3 =", x3, 
    print "y3 =", y3, 
    print "z3 =", z3,
  
  
# Driver Code 
a = 1
b = -2
c = 0
d = 0
x1 = -1
y1 = 3
z1 = 4
  
# function call
mirror_point(a, b, c, d, x1, y1, z1)  

chevron_right


C#

// C# program to find Mirror of
// a point through a 3 D plane
using System;

class GFG
{

// Function to mirror image
static void mirror_point(int a, int b,
int c, int d,
int x1, int y1,
int z1)
{
float k = (-a * x1 – b * y1 – c * z1 – d) /
(float)(a * a + b * b + c * c);
float x2 = a * k + x1;
float y2 = b * k + y1;
float z2 = c * k + z1;
float x3 = 2 * x2 – x1;
float y3 = 2 * y2 – y1;
float z3 = 2 * z2 – z1;

Console.Write(“x3 = ” + x3 + ” “);
Console.Write(“y3 = ” + y3 + ” “);
Console.Write(“z3 = ” + z3 + ” “);
}

// Driver Code
static public void Main ()
{
int a = 1;
int b = -2;
int c = 0;
int d = 0;
int x1 = -1;
int y1 = 3;
int z1 = 4;

// function call
mirror_point(a, b, c, d,
x1, y1, z1);
}
}

// This code is contributed by jit_t

PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php 
// PHP program to find Mirror of
// a point through a 3 D plane
  
// Function to mirror image
function mirror_point($a, $b, $c, $d
                      $x1, $y1, $z1)
    $k = (-$a * $x1 - $b
           $y1 - $c * $z1 - $d) / 
          ($a * $a + $b
           $b + $c * $c);
    $x2 = $a * $k + $x1;
    $y2 = $b * $k + $y1;
    $z2 = $c * $k + $z1;
    $x3 = 2 * $x2 - $x1;
    $y3 = 2 * $y2 - $y1;
    $z3 = 2 * $z2 - $z1;
    echo sprintf("x3 = %.1f ", $x3); 
    echo sprintf("y3 = %.1f ", $y3); 
    echo sprintf("z3 = %.1f ", $z3); 
  
// Driver Code 
$a = 1;
$b = -2;
$c = 0;
$d = 0;
$x1 = -1;
$y1 = 3;
$z1 = 4;
// function call
mirror_point($a, $b, $c, $d
             $x1, $y1, $z1);
  
// This code is contributed 
// by Amber_Saxena.
?> 

chevron_right


Output:

x3 = 1.8 y3 = -2.6 z3 = 4.0


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : inderDuMCA, Amber_Saxena, jit_t