**Minkowski distance** is a metric in a normed vector space. Minkowski distance is used for distance similarity of vector. Given two or more vectors, find distance similarity of these vectors.

Mainly, Minkowski distance is applied in machine learning to find out distance similarity.

Examples :

Input : vector1 = 0 2 3 4 vector2 = 2, 4, 3, 7 p = 3 Output : distance1 = 3.5033 Input : vector1 = 1, 4, 7, 12, 23 vector2 = 2, 5, 6, 10, 20 p = 2 Output : distance2 = 4.0

**Note :** Here distance1 and distance2 are almost same so it will be in same near region.

`# Python3 program to find Minkowski distance ` ` ` `# import math library ` `from` `math ` `import` `*` `from` `decimal ` `import` `Decimal ` ` ` `# Function distance between two points ` `# and calculate distance value to given ` `# root value(p is root value) ` `def` `p_root(value, root): ` ` ` ` ` `root_value ` `=` `1` `/` `float` `(root) ` ` ` `return` `round` `(Decimal(value) ` `*` `*` ` ` `Decimal(root_value), ` `3` `) ` ` ` `def` `minkowski_distance(x, y, p_value): ` ` ` ` ` `# pass the p_root function to calculate ` ` ` `# all the value of vector parallely ` ` ` `return` `(p_root(` `sum` `(` `pow` `(` `abs` `(a` `-` `b), p_value) ` ` ` `for` `a, b ` `in` `zip` `(x, y)), p_value)) ` ` ` `# Driver Code ` `vector1 ` `=` `[` `0` `, ` `2` `, ` `3` `, ` `4` `] ` `vector2 ` `=` `[` `2` `, ` `4` `, ` `3` `, ` `7` `] ` `p ` `=` `3` `print` `(minkowski_distance(vector1, vector2, p)) ` |

**Output :**

3.503

Reference :

https://en.wikipedia.org/wiki/Minkowski_distance

Attention geek! Strengthen your foundations with the **Python Programming Foundation** Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the **Python DS** Course.