Skip to content
Related Articles

Related Articles

Improve Article
Minimum value to add to arr[i] so that an array can be split at index i with equal sum
  • Difficulty Level : Medium
  • Last Updated : 28 May, 2021

Given an array arr[] of integers, the task is to find the minimum non-negative integer k such that there exists an index jin the given array such that when arr[j] is updated as arr[j] + k, the sum of elements of array from index arr[0] to arr[j] is equal to the sum of elements from arr[j + 1] to arr[n – 1] i.e. 
 

arr[0] + arr[1] + … + arr[j] = arr[j + 1] + arr[j + 2] + … + arr[n – 1]


If no such k exists then print -1.
Examples: 
 

Input: arr[] = {6, 7, 1, 3, 8, 2, 4} 
Output:
If 3 is added to 1 sum of elements from index 0 to 2 and 3 to 6 will be equal to 17.
Input: arr[] = {7, 3} 
Output: -1 
 

 



A simple approach is to run two loops. For every element, find the difference between sums of elements on left and right. Finally, return minimum difference between the two sums.
An efficient approach: is to first calculate the prefix sum and store in an array pre[] where pre[i] stores the sum of array elements from arr[0] to arr[i]. For each index, if the sum of elements left to it (including the element itself i.e. pre[i]) is less than or equal to the sum of right elements (pre[n – 1] – pre[i]) then update the value of k as min(k, (pre[n – 1] – pre[i]) – pre[i])
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum value k to be added
int FindMinNum(int arr[], int n)
{
 
    // Array to store prefix sum
    int pre[n];
 
    // Initialize the prefix value for first index
    // as the first element of the array
    pre[0] = arr[0];
 
    // Compute the prefix sum for rest of the indices
    for (int i = 1; i < n; i++)
        pre[i] = pre[i - 1] + arr[i];
 
    int k = INT_MAX;
 
    for (int i = 0; i < n - 1; i++) {
 
        // Sum of elements from arr[i + 1] to arr[n - 1]
        int rightSum = pre[n - 1] - pre[i];
 
        // If sum on the right side of the ith element
        // is greater than or equal to the sum on the
        // left side then update the value of k
        if (rightSum >= pre[i])
            k = min(k, rightSum - pre[i]);
    }
 
    if (k != INT_MAX)
        return k;
 
    return -1;
}
 
// Driver code
int main()
{
    int arr[] = { 6, 7, 1, 3, 8, 2, 4 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << FindMinNum(arr, n);
    return 0;
}

Java




// Java implementation of the approach
class GfG
{
 
// Function to return the minimum value k to be added
static int FindMinNum(int arr[], int n)
{
 
    // Array to store prefix sum
    int pre[] = new int[n];
 
    // Initialize the prefix value for first index
    // as the first element of the array
    pre[0] = arr[0];
 
    // Compute the prefix sum for rest of the indices
    for (int i = 1; i < n; i++)
        pre[i] = pre[i - 1] + arr[i];
 
    int k = Integer.MAX_VALUE;
 
    for (int i = 0; i < n - 1; i++)
    {
 
        // Sum of elements from arr[i + 1] to arr[n - 1]
        int rightSum = pre[n - 1] - pre[i];
 
        // If sum on the right side of the ith element
        // is greater than or equal to the sum on the
        // left side then update the value of k
        if (rightSum >= pre[i])
            k = Math.min(k, rightSum - pre[i]);
    }
 
    if (k != Integer.MAX_VALUE)
        return k;
 
    return -1;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 6, 7, 1, 3, 8, 2, 4 };
    int n = arr.length;
    System.out.println(FindMinNum(arr, n));
}
}
 
// This code is contributed by Prerna Saini

Python3




# Python 3 implementation of the approach
import sys
 
# Function to return the minimum
# value k to be added
def FindMinNum(arr, n):
     
    # Array to store prefix sum
    pre = [0 for i in range(n)]
 
    # Initialize the prefix value for first
    # index as the first element of the array
    pre[0] = arr[0]
 
    # Compute the prefix sum for rest
    # of the indices
    for i in range(1, n, 1):
        pre[i] = pre[i - 1] + arr[i]
 
    k = sys.maxsize
 
    for i in range(n - 1):
         
        # Sum of elements from arr[i + 1] to arr[n - 1]
        rightSum = pre[n - 1] - pre[i]
 
        # If sum on the right side of the ith element
        # is greater than or equal to the sum on the
        # left side then update the value of k
        if (rightSum >= pre[i]):
            k = min(k, rightSum - pre[i])
 
    if (k != sys.maxsize):
        return k
 
    return -1
 
# Driver code
if __name__ == '__main__':
    arr = [6, 7, 1, 3, 8, 2, 4]
    n = len(arr)
    print(FindMinNum(arr, n))
 
# This code is contributed by
# Surendra_Gangwar

C#




// C# implementation of the approach
using System;
 
class GfG
{
 
    // Function to return the minimum value k to be added
    static int FindMinNum(int []arr, int n)
    {
     
        // Array to store prefix sum
        int []pre = new int[n];
     
        // Initialize the prefix value for first index
        // as the first element of the array
        pre[0] = arr[0];
     
        // Compute the prefix sum for rest of the indices
        for (int i = 1; i < n; i++)
            pre[i] = pre[i - 1] + arr[i];
     
        int k = int.MaxValue;
     
        for (int i = 0; i < n - 1; i++)
        {
     
            // Sum of elements from arr[i + 1] to arr[n - 1]
            int rightSum = pre[n - 1] - pre[i];
     
            // If sum on the right side of the ith element
            // is greater than or equal to the sum on the
            // left side then update the value of k
            if (rightSum >= pre[i])
                k = Math.Min(k, rightSum - pre[i]);
        }
     
        if (k != int.MaxValue)
            return k;
     
        return -1;
    }
     
    // Driver code
    public static void Main()
    {
        int []arr = { 6, 7, 1, 3, 8, 2, 4 };
        int n = arr.Length;
         
        Console.WriteLine(FindMinNum(arr, n));
    }
}
 
// This code is contributed by Ryuga

PHP




<?php
// PHP implementation of the approach
 
// Function to return the minimum
// value k to be added
function FindMinNum($arr, $n)
{
 
    // Array to store prefix sum
    $pre = array();
 
    // Initialize the prefix value for first index
    // as the first element of the array
    $pre[0] = $arr[0];
 
    // Compute the prefix sum for
    // rest of the indices
    for ($i = 1; $i < $n; $i++)
        $pre[$i] = $pre[$i - 1] + $arr[$i];
 
    $k = PHP_INT_MAX;
 
    for ($i = 0; $i < $n - 1; $i++)
    {
 
        // Sum of elements from arr[i + 1] to arr[n - 1]
        $rightSum = $pre[$n - 1] - $pre[$i];
 
        // If sum on the right side of the ith element
        // is greater than or equal to the sum on the
        // left side then update the value of k
        if ($rightSum >= $pre[$i])
            $k = min($k, $rightSum - $pre[$i]);
    }
 
    if ($k != PHP_INT_MAX)
        return $k;
 
    return -1;
}
 
// Driver code
$arr = array(6, 7, 1, 3, 8, 2, 4);
$n = sizeof($arr);
echo FindMinNum($arr, $n);
 
// This code is contributed by Akanksha Rai
?>

Javascript




<script>
//Javascript Implementation
 
// Function to return the minimum value k to be added
function FindMinNum(arr, n)
{
   
    // Array to store prefix sum
    var pre = new Array(n);
   
    // Initialize the prefix value for first index
    // as the first element of the array
    pre[0] = arr[0];
   
    // Compute the prefix sum for rest of the indices
    for (var i = 1; i < n; i++)
        pre[i] = pre[i - 1] + arr[i];
   
    var k = Number.MAX_VALUE;
   
    for (var i = 0; i < n - 1; i++) {
   
        // Sum of elements from arr[i + 1] to arr[n - 1]
        var rightSum = pre[n - 1] - pre[i];
   
        // If sum on the right side of the ith element
        // is greater than or equal to the sum on the
        // left side then update the value of k
        if (rightSum >= pre[i])
            k = Math.min(k, rightSum - pre[i]);
    }
   
    if (k != Number.MAX_VALUE)
        return k;
   
    return -1;
}
 
/* Driver code*/
var arr = [6, 7, 1, 3, 8, 2, 4];
var n = arr.length;
document.write(FindMinNum(arr, n))
// This code is contributed by shubhamsingh10
</script>
Output: 
3

 

Time Complexity : O(n) 
Auxiliary Space : O(n)
Further optimization : We can avoid use of extra space using below steps. 
1) Compute sum of all elements. 
2) Keep adding left sum and right sum can be obtained by subtracting left sum from the total sum. 
The idea is similar to optimized solution of equilibrium index problem.
Time Complexity : O(n) 
Auxiliary Space : O(1)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live 




My Personal Notes arrow_drop_up
Recommended Articles
Page :