Open In App
Related Articles

Minimum value that divides one number and divisible by other

Improve Article
Improve
Save Article
Save
Like Article
Like

Given two integer p and q, the task is to find the minimum possible number x such that q % x = 0 and x % p = 0. If the conditions aren’t true for any number then print -1.
Examples: 
 

Input: p = 3, q = 99 
Output:
99 % 3 = 0 
3 % 3 = 0
Input: p = 2, q = 7 
Output: -1 
 

 

Approach: If a number x satisfies the given condition then it’s obvious that q will be divided by p i.e. q % p = 0 because x is a multiple of p and q is a multiple of x
So the minimum possible value of x will be the GCD of p and q and when q is not divisible by p then no number will satisfy the given condition.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum valid number
// that satisfies the given conditions
int minValidNumber(int p, int q)
{
    // If possible
    if (q % p == 0)
        return __gcd(p, q);
    else
        return -1;
}
 
// Driver Code
int main()
{
    int p = 2, q = 6;
    cout << minValidNumber(p, q);
    return 0;
}


Java




//Java  implementation of the approach
 
import java.io.*;
 
class GFG {
     
    // Function to calculate gcd
    static int __gcd(int a, int b)
    {
         
        // Everything divides 0
        if (a == 0 || b == 0)
            return 0;
     
        // base case
        if (a == b)
            return a;
     
        // a is greater
        if (a > b)
            return __gcd(a - b, b);
             
        return __gcd(a, b - a);
    }
 
// Function to return the minimum valid number
// that satisfies the given conditions
static int minValidNumber(int p, int q)
{
    // If possible
    if (q % p == 0)
        return __gcd(p, q);
    else
        return -1;
}
 
// Driver Code
    public static void main (String[] args) {
        int p = 2, q = 6;
        System.out.print(minValidNumber(p, q));
 
 
    // THis code is contributed by  Sachin.
    }
}


Python3




# Python3 implementation of the approach
from math import gcd
 
# Function to return the minimum
# valid number that satisfies the
# given conditions
def minValidNumber(p, q) :
 
    # If possible
    if (q % p == 0) :
        return gcd(p, q)
    else :
        return -1
 
# Driver Code
if __name__ == "__main__" :
 
    p, q = 2, 6;
    print(minValidNumber(p, q))
 
# This code is contributed by Ryuga


C#




// C# implementation of the approach
using System;
 
class GFG
{
    // Function to calculate gcd
    static int __gcd(int a, int b)
    {
          
        // Everything divides 0
        if (a == 0 || b == 0)
            return 0;
      
        // base case
        if (a == b)
            return a;
      
        // a is greater
        if (a > b)
            return __gcd(a - b, b);
              
        return __gcd(a, b - a);
    }
 
// Function to return the minimum valid number
// that satisfies the given conditions
static int minValidNumber(int p, int q)
{
    // If possible
    if (q % p == 0)
        return __gcd(p, q);
    else
        return -1;
}
 
// Driver Code
public static void Main()
{
    int p = 2, q = 6;
    Console.Write(minValidNumber(p, q));
}
}
 
// THis code is contributed
// by Mukul Singh


PHP




<?php
// Php implementation of the approach
 
function gcd($a, $b)
{
 
    // Everything divides 0
    if($b == 0)
 
        return $a ;
 
    return gcd($b , $a % $b);
}
 
// Function to return the minimum valid
// number that satisfies the given conditions
function minValidNumber($p, $q)
{
    // If possible
    if ($q % $p == 0)
        return gcd($p, $q);
    else
        return -1;
}
 
// Driver Code
$p = 2;
$q = 6;
echo minValidNumber($p, $q);
 
// This code is contributed by ita_c
?>


Javascript




<script>
 
    // Javascript implementation of the approach
     
    // Function to calculate gcd
    function __gcd(a, b)
    {
           
        // Everything divides 0 
        if (a == 0 || b == 0)
            return 0;
       
        // base case
        if (a == b)
            return a;
       
        // a is greater
        if (a > b)
            return __gcd(a - b, b);
               
        return __gcd(a, b - a);
    }
     
    // Function to return the minimum valid number
    // that satisfies the given conditions
    function minValidNumber(p, q)
    {
        // If possible
        if (q % p == 0)
            return __gcd(p, q);
        else
            return -1;
    }  
     
    let p = 2, q = 6;
    document.write(minValidNumber(p, q));
     
</script>


Output: 

2

 

Time Complexity: O(logn)

Auxiliary Space: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 24 Jun, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials