Given two integer p and q, the task is to find the minimum possible number x such that q % x = 0 and x % p = 0. If the conditions aren’t true for any number then print -1.
Examples:
Input: p = 3, q = 99
Output: 3
99 % 3 = 0
3 % 3 = 0
Input: p = 2, q = 7
Output: -1
Approach: If a number x satisfies the given condition then it’s obvious that q will be divided by p i.e. q % p = 0 because x is a multiple of p and q is a multiple of x.
So the minimum possible value of x will be the GCD of p and q and when q is not divisible by p then no number will satisfy the given condition.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int minValidNumber( int p, int q)
{
if (q % p == 0)
return __gcd(p, q);
else
return -1;
}
int main()
{
int p = 2, q = 6;
cout << minValidNumber(p, q);
return 0;
}
|
Java
import java.io.*;
class GFG {
static int __gcd( int a, int b)
{
if (a == 0 || b == 0 )
return 0 ;
if (a == b)
return a;
if (a > b)
return __gcd(a - b, b);
return __gcd(a, b - a);
}
static int minValidNumber( int p, int q)
{
if (q % p == 0 )
return __gcd(p, q);
else
return - 1 ;
}
public static void main (String[] args) {
int p = 2 , q = 6 ;
System.out.print(minValidNumber(p, q));
}
}
|
Python3
from math import gcd
def minValidNumber(p, q) :
if (q % p = = 0 ) :
return gcd(p, q)
else :
return - 1
if __name__ = = "__main__" :
p, q = 2 , 6 ;
print (minValidNumber(p, q))
|
C#
using System;
class GFG
{
static int __gcd( int a, int b)
{
if (a == 0 || b == 0)
return 0;
if (a == b)
return a;
if (a > b)
return __gcd(a - b, b);
return __gcd(a, b - a);
}
static int minValidNumber( int p, int q)
{
if (q % p == 0)
return __gcd(p, q);
else
return -1;
}
public static void Main()
{
int p = 2, q = 6;
Console.Write(minValidNumber(p, q));
}
}
|
PHP
<?php
function gcd( $a , $b )
{
if ( $b == 0)
return $a ;
return gcd( $b , $a % $b );
}
function minValidNumber( $p , $q )
{
if ( $q % $p == 0)
return gcd( $p , $q );
else
return -1;
}
$p = 2;
$q = 6;
echo minValidNumber( $p , $q );
?>
|
Javascript
<script>
function __gcd(a, b)
{
if (a == 0 || b == 0)
return 0;
if (a == b)
return a;
if (a > b)
return __gcd(a - b, b);
return __gcd(a, b - a);
}
function minValidNumber(p, q)
{
if (q % p == 0)
return __gcd(p, q);
else
return -1;
}
let p = 2, q = 6;
document.write(minValidNumber(p, q));
</script>
|
Time Complexity: O(logn)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
24 Jun, 2022
Like Article
Save Article