# Minimum value possible of a given function from the given set

Given a set Sn that represents a finite set {1, 2, 3, ….., n}. Zn denotes the set of all subsets of Sn which contains exactly 2 elements. The task is to find the value of F(n).

Examples:

Input: N = 3
Output: 4
For n=3 we get value 1, 2 times and 2, 1 times
thus the answer would be 1 * 2 + 2 * 1 = 4.

Input: N = 10
Output: 165


## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

For each value as we go from left to right in the set we get each value, n-value number of times that value.
i.e. For each i, value to be added is (i + 1) * (n – i – 1)

Below is the implementation of above approach:

 // C++ implementation of above approach  #include  using namespace std;  #define ll long long     // Function to find the value of F(n)  ll findF_N(ll n)  {         ll ans = 0;      for (ll i = 0; i < n; ++i)          ans += (i + 1) * (n - i - 1);         return ans;  }     // Driver code  int main()  {         ll n = 3;      cout << findF_N(n);     return 0;  }

 // Java implementation of above approach     import java.io.*;     class GFG {               // Function to find the value of F(n)  static long findF_N(long n)  {         long ans = 0;      for (long i = 0; i < n; ++i)          ans += (i + 1) * (n - i - 1);         return ans;  }     // Driver code         public static void main (String[] args) {              long n = 3;      System.out.println( findF_N(n));      }  }  // This code is contributed by anuj_67..

 # Python3 implementation of  # above approach     # Function to find the value of F(n)  def findF_N(n):         ans = 0     for i in range(n):          ans = ans + (i + 1) * (n - i - 1)         return ans     # Driver code  n = 3 print(findF_N(n))     # This code is contributed by  # Sanjit_Prasad

 // C# implementation of above approach  using System;     class GFG  {  // Function to find the   // value of F(n)  static long findF_N(long n)  {         long ans = 0;      for (long i = 0; i < n; ++i)          ans += (i + 1) * (n - i - 1);         return ans;  }     // Driver code  public static void Main ()   {      long n = 3;      Console.WriteLine(findF_N(n));  }  }     // This code is contributed by anuj_67

 

Output:
4
`

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : vt_m, Akanksha_Rai, Sanjit_Prasad

Practice Tags :