Open In App
Related Articles

Minimum value possible of a given function from the given set

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a set Sn that represents a finite set {1, 2, 3, ….., n}. Zn denotes the set of all subsets of Sn which contains exactly 2 elements. The task is to find the value of F(n).

F(n) = \sum_{X\in Z_n }min(X)

Examples: 

Input: N = 3 
Output: 4
For n=3 we get value 1, 2 times and 2, 1 times 
thus the answer would be 1 * 2 + 2 * 1 = 4.

Input: N = 10
Output: 165

For each value as we go from left to right in the set we get each value, n-value number of times that value. 
i.e. For each i, value to be added is (i + 1) * (n – i – 1) 

Below is the implementation of the above approach: 
 

C++




// C++ implementation of above approach
 
#include <bits/stdc++.h>
using namespace std;
#define ll long long
 
// Function to find the value of F(n)
ll findF_N(ll n)
{
 
    ll ans = 0;
    for (ll i = 0; i < n; ++i)
        ans += (i + 1) * (n - i - 1);
 
    return ans;
}
 
// Driver code
int main()
{
 
    ll n = 3;
    cout << findF_N(n);
 
    return 0;
}


Java




// Java implementation of above approach
 
import java.io.*;
 
class GFG {
 
    // Function to find the value of F(n)
    static long findF_N(long n)
    {
 
        long ans = 0;
        for (long i = 0; i < n; ++i)
            ans += (i + 1) * (n - i - 1);
 
        return ans;
    }
 
    // Driver code
 
    public static void main(String[] args)
    {
        long n = 3;
        System.out.println(findF_N(n));
    }
}
// This code is contributed by anuj_67..


Python3




# Python3 implementation of
# above approach
 
# Function to find the value of F(n)
 
 
def findF_N(n):
 
    ans = 0
    for i in range(n):
        ans = ans + (i + 1) * (n - i - 1)
 
    return ans
 
 
# Driver code
n = 3
print(findF_N(n))
 
# This code is contributed by
# Sanjit_Prasad


C#




// C# implementation of above approach
using System;
 
class GFG {
    // Function to find the
    // value of F(n)
    static long findF_N(long n)
    {
 
        long ans = 0;
        for (long i = 0; i < n; ++i)
            ans += (i + 1) * (n - i - 1);
 
        return ans;
    }
 
    // Driver code
    public static void Main()
    {
        long n = 3;
        Console.WriteLine(findF_N(n));
    }
}
 
// This code is contributed by anuj_67


PHP




<?php
// PHP implementation of above approach
 
// Function to find the value of F(n)
function findF_N($n)
{
 
    $ans = 0;
    for ($i = 0; $i < $n; ++$i)
        $ans += ($i + 1) * ($n - $i - 1);
 
    return $ans;
}
 
// Driver code
$n = 3;
echo findF_N($n);
 
// This code is contributed
// by Akanksha Rai(Abby_akku)


Javascript




<script>
  
// JavaScript implementation of above approach
 
// Function to find the value of F(n)
function findF_N(n)
{
 
    var ans = 0;
    for (var i = 0; i < n; ++i)
        ans += (i + 1) * (n - i - 1);
 
    return ans;
}
 
// Driver code
var n = 3;
document.write( findF_N(n));
 
</script>


Output: 

4

 

Time Complexity: O(n) // n is the length of the array

Space Complexity: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 26 Jul, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials