GeeksforGeeks App
Open App
Browser
Continue

# Minimum time required to transport all the boxes from source to the destination under the given constraints

Given two arrays, box[] and truck[], where box[i] represents the weight of the ith box and truck[i] represents the maximum load that the ith truck can carry. Now each truck takes 1 hour to transport a box from source to destination and another one hour to come back. Now, given that all the boxes are kept at the source, the task is to find the minimum time required to transport all the boxes from the source to the destination.

Note that there will always be some time in which the boxes can be transported and only a single box can be carried by truck at any instance of time.

Examples:

Input: box[] = {7, 6, 5, 4, 3}, truck[] = {10, 3}
Output:
1st hour: truck[0] carries box[0] and truck[1] carries box[4]
2nd hour: Both trucks are back at the source location.
Now, truck[1] cannot carry anymore boxes as all the remaining boxes
have weights more than the capacity of a truck[1].
So, truck[0] will carry box[1] and box[2]
in a total of four hours. (source-destination and then destination-source)
And finally, box[3] will take another hour to reach the destination.
So, total time taken = 2 + 4 + 1 = 7

Input: box[] = {10, 2, 16, 19}, truck[] = {29, 25}
Output: 3

Approach: The idea is to use binary search and sort the two arrays. Here the lower bound will be 0 and the upper bound will be 2 * size of box[] because in the worst case, the amount of time required to transport all the boxes will be 2 * size of box array. Now compute the mid-value, and for each mid-value check if all the boxes can be transported by the loaders in time = mid. If yes, then update the upper bound as mid – 1 and if not, then update the lower bound as mid + 1.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function that returns true if it is``// possible to transport all the boxes``// in the given amount of time``bool` `isPossible(``int` `box[], ``int` `truck[],``                ``int` `n, ``int` `m, ``int` `min_time)``{``    ``int` `temp = 0;``    ``int` `count = 0;` `    ``while` `(count < m) {``        ``for` `(``int` `j = 0; j < min_time``                        ``&& temp < n``                        ``&& truck[count] >= box[temp];``             ``j += 2)``            ``temp++;` `        ``count++;``    ``}` `    ``// If all the boxes can be``    ``// transported in the given time``    ``if` `(temp == n)``        ``return` `true``;` `    ``// If all the boxes can't be``    ``// transported in the given time``    ``return` `false``;``}` `// Function to return the minimum time required``int` `minTime(``int` `box[], ``int` `truck[], ``int` `n, ``int` `m)``{` `    ``// Sort the two arrays``    ``sort(box, box + n);``    ``sort(truck, truck + m);` `    ``int` `l = 0;``    ``int` `h = 2 * n;` `    ``// Stores minimum time in which``    ``// all the boxes can be transported``    ``int` `min_time = 0;` `    ``// Check for the minimum time in which``    ``// all the boxes can be transported``    ``while` `(l <= h) {``        ``int` `mid = (l + h) / 2;` `        ``// If it is possible to transport all``        ``// the boxes in mid amount of time``        ``if` `(isPossible(box, truck, n, m, mid)) {``            ``min_time = mid;``            ``h = mid - 1;``        ``}``        ``else``            ``l = mid + 1;``    ``}` `    ``return` `min_time;``}` `// Driver code``int` `main()``{``    ``int` `box[] = { 10, 2, 16, 19 };``    ``int` `truck[] = { 29, 25 };` `    ``int` `n = ``sizeof``(box) / ``sizeof``(``int``);``    ``int` `m = ``sizeof``(truck) / ``sizeof``(``int``);` `    ``printf``(``"%d"``, minTime(box, truck, n, m));` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``import` `java.util.Arrays;` `class` `GFG``{` `// Function that returns true if it is``// possible to transport all the boxes``// in the given amount of time``static` `boolean` `isPossible(``int` `box[], ``int` `truck[],``                ``int` `n, ``int` `m, ``int` `min_time)``{``    ``int` `temp = ``0``;``    ``int` `count = ``0``;` `    ``while` `(count < m)``    ``{``        ``for` `(``int` `j = ``0``; j < min_time``                        ``&& temp < n``                        ``&& truck[count] >= box[temp];``            ``j += ``2``)``            ``temp++;` `        ``count++;``    ``}` `    ``// If all the boxes can be``    ``// transported in the given time``    ``if` `(temp == n)``        ``return` `true``;` `    ``// If all the boxes can't be``    ``// transported in the given time``    ``return` `false``;``}` `// Function to return the minimum time required``static` `int` `minTime(``int` `box[], ``int` `truck[], ``int` `n, ``int` `m)``{` `    ``// Sort the two arrays``    ``Arrays.sort(box);``    ``Arrays.sort(truck);` `    ``int` `l = ``0``;``    ``int` `h = ``2` `* n;` `    ``// Stores minimum time in which``    ``// all the boxes can be transported``    ``int` `min_time = ``0``;` `    ``// Check for the minimum time in which``    ``// all the boxes can be transported``    ``while` `(l <= h) {``        ``int` `mid = (l + h) / ``2``;` `        ``// If it is possible to transport all``        ``// the boxes in mid amount of time``        ``if` `(isPossible(box, truck, n, m, mid))``        ``{``            ``min_time = mid;``            ``h = mid - ``1``;``        ``}``        ``else``            ``l = mid + ``1``;``    ``}` `    ``return` `min_time;``}` `// Driver code``public` `static` `void` `main(String[] args)``{``    ``int` `box[] = { ``10``, ``2``, ``16``, ``19` `};``    ``int` `truck[] = { ``29``, ``25` `};` `    ``int` `n = box.length;``    ``int` `m = truck.length;` `    ``System.out.printf(``"%d"``, minTime(box, truck, n, m));``}``}` `/* This code contributed by PrinciRaj1992 */`

## Python3

 `# Python3 implementation of the approach` `# Function that returns true if it is``# possible to transport all the boxes``# in the given amount of time``def` `isPossible(box, truck, n, m, min_time) :``    ` `    ``temp ``=` `0``    ``count ``=` `0` `    ``while` `(count < m) :``        ``j ``=` `0``        ``while` `(j < min_time ``and` `temp < n ``and``                    ``truck[count] >``=` `box[temp] ):``            ``temp ``+``=``1``            ``j ``+``=` `2` `        ``count ``+``=` `1` `    ``# If all the boxes can be``    ``# transported in the given time``    ``if` `(temp ``=``=` `n) :``        ``return` `True` `    ``# If all the boxes can't be``    ``# transported in the given time``    ``return` `False` `# Function to return the minimum time required``def` `minTime(box, truck, n, m) :` `    ``# Sort the two arrays``    ``box.sort();``    ``truck.sort();` `    ``l ``=` `0``    ``h ``=` `2` `*` `n` `    ``# Stores minimum time in which``    ``# all the boxes can be transported``    ``min_time ``=` `0` `    ``# Check for the minimum time in which``    ``# all the boxes can be transported``    ``while` `(l <``=` `h) :``        ``mid ``=` `(l ``+` `h) ``/``/` `2` `        ``# If it is possible to transport all``        ``# the boxes in mid amount of time``        ``if` `(isPossible(box, truck, n, m, mid)) :``            ``min_time ``=` `mid``            ``h ``=` `mid ``-` `1``    ` `        ``else` `:``            ` `            ``l ``=` `mid ``+` `1` `    ``return` `min_time` `# Driver code``if` `__name__ ``=``=` `"__main__"` `:` `    ``box ``=` `[ ``10``, ``2``, ``16``, ``19` `]``    ``truck ``=` `[ ``29``, ``25` `]` `    ``n ``=` `len``(box)``    ``m ``=` `len``(truck)` `    ``print``(minTime(box, truck, n, m))``    ` `# This code is contributed by Ryuga`

## C#

 `// C# implementation of the approach``using` `System;``    ` `class` `GFG``{` `// Function that returns true if it is``// possible to transport all the boxes``// in the given amount of time``static` `bool` `isPossible(``int` `[]box, ``int` `[]truck,``                ``int` `n, ``int` `m, ``int` `min_time)``{``    ``int` `temp = 0;``    ``int` `count = 0;` `    ``while` `(count < m)``    ``{``        ``for` `(``int` `j = 0; j < min_time``                        ``&& temp < n``                        ``&& truck[count] >= box[temp];``            ``j += 2)``            ``temp++;` `        ``count++;``    ``}` `    ``// If all the boxes can be``    ``// transported in the given time``    ``if` `(temp == n)``        ``return` `true``;` `    ``// If all the boxes can't be``    ``// transported in the given time``    ``return` `false``;``}` `// Function to return the minimum time required``static` `int` `minTime(``int` `[]box, ``int` `[]truck, ``int` `n, ``int` `m)``{` `    ``// Sort the two arrays``    ``Array.Sort(box);``    ``Array.Sort(truck);` `    ``int` `l = 0;``    ``int` `h = 2 * n;` `    ``// Stores minimum time in which``    ``// all the boxes can be transported``    ``int` `min_time = 0;` `    ``// Check for the minimum time in which``    ``// all the boxes can be transported``    ``while` `(l <= h)``    ``{``        ``int` `mid = (l + h) / 2;` `        ``// If it is possible to transport all``        ``// the boxes in mid amount of time``        ``if` `(isPossible(box, truck, n, m, mid))``        ``{``            ``min_time = mid;``            ``h = mid - 1;``        ``}``        ``else``            ``l = mid + 1;``    ``}` `    ``return` `min_time;``}` `// Driver code``public` `static` `void` `Main(String[] args)``{``    ``int``[] box = { 10, 2, 16, 19 };``    ``int` `[]truck = { 29, 25 };` `    ``int` `n = box.Length;``    ``int` `m = truck.Length;` `    ``Console.WriteLine(``"{0}"``, minTime(box, truck, n, m));``}``}` `/* This code contributed by PrinciRaj1992 */`

## PHP

 `= ``\$box``[``\$temp``];``            ``\$j` `+= 2)``            ``\$temp``++;` `        ``\$count``++;``    ``}` `    ``// If all the boxes can be``    ``// transported in the given time``    ``if` `(``\$temp` `== ``\$n``)``        ``return` `true;` `    ``// If all the boxes can't be``    ``// transported in the given time``    ``return` `false;``}` `// Function to return the minimum time required``function` `minTime( ``\$box``, ``\$truck``, ``\$n``, ``\$m``)``{` `    ``// Sort the two arrays``    ``sort(``\$box``);``    ``sort(``\$truck``);` `    ``\$l` `= 0;``    ``\$h` `= 2 * ``\$n``;` `    ``// Stores minimum time in which``    ``// all the boxes can be transported``    ``\$min_time` `= 0;` `    ``// Check for the minimum time in which``    ``// all the boxes can be transported``    ``while` `(``\$l` `<= ``\$h``) {``        ``\$mid` `= intdiv((``\$l` `+ ``\$h``) , 2);` `        ``// If it is possible to transport all``        ``// the boxes in mid amount of time``        ``if` `(isPossible(``\$box``, ``\$truck``, ``\$n``, ``\$m``, ``\$mid``))``        ``{``            ``\$min_time` `= ``\$mid``;``            ``\$h` `= ``\$mid` `- 1;``        ``}``        ``else``            ``\$l` `= ``\$mid` `+ 1;``    ``}` `    ``return` `\$min_time``;``}` `// Driver code``\$box` `= ``array``( 10, 2, 16, 19 );``\$truck` `= ``array``( 29, 25 );` `\$n` `= sizeof(``\$box``);``\$m` `= sizeof(``\$truck``);` `echo` `minTime(``\$box``, ``\$truck``, ``\$n``, ``\$m``);`  `// This code is contributed by ihritik` `?>`

## Javascript

 ``

Output:

`3`

Time Complexity: O(N * log(N))
Auxiliary Space: O(1)

My Personal Notes arrow_drop_up