# Minimum swaps required to make a binary string divisible by 2^k

• Last Updated : 30 Aug, 2021

Given a binary string S of length N and an integer K, the task is to find the minimum number of adjacent swaps required to make the binary string divisible by 2K. If it is not possible then print -1.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: S = “100111”, K = 2
Output:
Swapping the right-most zero 3 times
to the right, we get “101110”.
Swapping the second right-most zero
3 times to the right, we get “111100”.
Input: S = “1011”, K = 2
Output: -1

Method 1: An approach will be swapping from the right-most zero. So, let’s rephrase the problem to something simpler. The minimum number of swaps are required such that at least K consecutive zeros are made available at the right end.
One way will be to simulate the swapping. Starting from the right-most zero, swap it till it has 1 at its right, and it’s not the end of the string. This will be performed for the K rightmost zeros. The time complexity of this approach will be O(N * K).

Method 2: The key to performing better here will be to avoid doing the simulation.
Observation:

Among the K right-most zeros, each zero will need to be swapped X number of times, where X is the number of 1s to the right of that zero.

Thus, for the K right-most zeros, the task is to find the sum of the number of 1s to the right of each of them.

Algorithm:

• Initialize variable c_zero = 0, c_one = 0 and ans = 0.
• Run a loop from i = N – 1 to i = 0
• If S[i] = 0 then update c_zero = c_zero + 1 and ans = ans + c_one.
• If S[i] = 1 then update c_one = c_one + 1.
• If c_zero = K then break.
• If c_zero < K then return -1.
• Finally, return the ans.

Thus, the time complexity of this approach will be O(N).

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function to return the minimum swaps required``int` `findMinSwaps(string s, ``int` `k)``{``    ``// To store the final answer``    ``int` `ans = 0;` `    ``// To store the count of one and zero``    ``int` `c_one = 0, c_zero = 0;` `    ``// Loop from end of the string``    ``for` `(``int` `i = s.size() - 1; i >= 0; i--) {` `        ``// If s[i] = 1``        ``if` `(s[i] == ``'1'``)``            ``c_one++;` `        ``// If s[i] = 0``        ``if` `(s[i] == ``'0'``)``            ``c_zero++, ans += c_one;` `        ``// If c_zero = k``        ``if` `(c_zero == k)``            ``break``;``    ``}` `    ``// If the result can't``    ``// be achieved``    ``if` `(c_zero < k)``        ``return` `-1;` `    ``// Return the final answer``    ``return` `ans;``}` `// Driver code``int` `main()``{``    ``string s = ``"100111"``;``    ``int` `k = 2;` `    ``cout << findMinSwaps(s, k);` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach` `class` `GFG``{``    ` `    ``// Function to return the minimum swaps required``    ``static` `int` `findMinSwaps(String s, ``int` `k)``    ``{``        ``// To store the final answer``        ``int` `ans = ``0``;``    ` `        ``// To store the count of one and zero``        ``int` `c_one = ``0``, c_zero = ``0``;``    ` `        ``// Loop from end of the string``        ``for` `(``int` `i = s.length() - ``1``; i >= ``0``; i--)``        ``{``    ` `            ``// If s[i] = 1``            ``if` `(s.charAt(i) == ``'1'``)``                ``c_one++;``    ` `            ``// If s[i] = 0``            ``if` `(s.charAt(i) == ``'0'``)``            ``{``                ``c_zero++;``                ``ans += c_one;``            ``}``    ` `            ``// If c_zero = k``            ``if` `(c_zero == k)``                ``break``;``        ``}``    ` `        ``// If the result can't``        ``// be achieved``        ``if` `(c_zero < k)``            ``return` `-``1``;``    ` `        ``// Return the final answer``        ``return` `ans;``    ``}``    ` `    ``// Driver code``    ``public` `static` `void` `main (String[] args)``    ``{``        ``String s = ``"100111"``;``        ``int` `k = ``2``;``    ` `        ``System.out.println(findMinSwaps(s, k));``    ` `    ``}``}` `// This code is contributed by AnkitRai01`

## Python3

 `# Python3 implementation of the approach` `# Function to return the minimum swaps required``def` `findMinSwaps(s, k) :` `    ``# To store the final answer``    ``ans ``=` `0``;` `    ``# To store the count of one and zero``    ``c_one ``=` `0``; c_zero ``=` `0``;` `    ``# Loop from end of the string``    ``for` `i ``in` `range``(``len``(s)``-``1``, ``-``1``, ``-``1``) :` `        ``# If s[i] = 1``        ``if` `(s[i] ``=``=` `'1'``) :``            ``c_one ``+``=` `1``;` `        ``# If s[i] = 0``        ``if` `(s[i] ``=``=` `'0'``) :``            ``c_zero ``+``=` `1``;``            ``ans ``+``=` `c_one;` `        ``# If c_zero = k``        ``if` `(c_zero ``=``=` `k) :``            ``break``;` `    ``# If the result can't``    ``# be achieved``    ``if` `(c_zero < k) :``        ``return` `-``1``;` `    ``# Return the final answer``    ``return` `ans;` `# Driver code``if` `__name__ ``=``=` `"__main__"` `:` `    ``s ``=` `"100111"``;``    ``k ``=` `2``;` `    ``print``(findMinSwaps(s, k));` `# This code is contributed by AnkitRai01`

## C#

 `// C# implementation of the approach``using` `System;` `class` `GFG``{``    ` `    ``// Function to return the minimum swaps required``    ``static` `int` `findMinSwaps(``string` `s, ``int` `k)``    ``{``        ``// To store the final answer``        ``int` `ans = 0;``    ` `        ``// To store the count of one and zero``        ``int` `c_one = 0, c_zero = 0;``    ` `        ``// Loop from end of the string``        ``for` `(``int` `i = s.Length - 1; i >= 0; i--)``        ``{``    ` `            ``// If s[i] = 1``            ``if` `(s[i] == ``'1'``)``                ``c_one++;``    ` `            ``// If s[i] = 0``            ``if` `(s[i] == ``'0'``)``            ``{``                ``c_zero++;``                ``ans += c_one;``            ``}``    ` `            ``// If c_zero = k``            ``if` `(c_zero == k)``                ``break``;``        ``}``    ` `        ``// If the result can't``        ``// be achieved``        ``if` `(c_zero < k)``            ``return` `-1;``    ` `        ``// Return the final answer``        ``return` `ans;``    ``}``    ` `    ``// Driver code``    ``public` `static` `void` `Main()``    ``{``        ``string` `s = ``"100111"``;``        ``int` `k = 2;``    ` `        ``Console.WriteLine(findMinSwaps(s, k));``    ``}``}` `// This code is contributed by AnkitRai01`

## Javascript

 ``
Output:
`6`

My Personal Notes arrow_drop_up