Open In App
Related Articles

# Minimum Swaps for Bracket Balancing

You are given a string of 2N characters consisting of N ‘[‘ brackets and N ‘]’ brackets. A string is considered balanced if it can be represented in the form S2[S1] where S1 and S2 are balanced strings. We can make an unbalanced string balanced by swapping adjacent characters. Calculate the minimum number of swaps necessary to make a string balanced.

Examples:

`Input  : []][][Output : 2First swap: Position 3 and 4[][]][Second swap: Position 5 and 6[][][]Input  : [[][]]Output : 0The string is already balanced.`

We can solve this problem by using greedy strategies. If the first X characters form a balanced string, we can neglect these characters and continue on. If we encounter a ‘]’ before the required ‘[‘, then we must start swapping elements to balance the string.

Naive Approach
Initialize sum = 0 where sum stores result. Go through the string maintaining a count of the number of ‘[‘ brackets encountered. Reduce this count when we encounter a ‘]’ character. If the count hits negative, then we must start balancing the string.
Let index ‘i’ represent the position we are at. We now move forward to the next ‘[‘ at index j. Increase sum by j – i. Move the ‘[‘ at position j, to position i, and shift all other characters to the right. Set the count back to 1 and continue traversing the string. In the end, ‘sum’ will have the required value.

Code-

## C++

 `// C++ program to count swaps required to balance string``#include``using` `namespace` `std;` `// Function to calculate swaps required``int` `swapCount(string s)``{``    ``//To store answer``    ``int` `ans=0;``    ` `    ``//To store count of '['``    ``int` `count=0;``    ` `    ``//Size of string``    ``int` `n=s.size();``    ` `    ``//Traverse over the string``    ``for``(``int` `i=0;ii;k--){``                ``s[k]=s[k-1];``            ``}``            ``s[i]=ch;``        ``}``    ``}``    ``return` `ans;``}` `// Driver code``int` `main()``{``    ``string s = ``"[]][]["``;``    ``cout << swapCount(s) << ``"\n"``;` `    ``s = ``"[[][]]"``;``    ``cout << swapCount(s) << ``"\n"``;``    ` `    ``return` `0;``}`

## Java

 `// Java program to count swaps required to balance string` `public` `class` `GFG {``    ` `    ``// Function to calculate swaps required``    ``static` `int` `swapCount(String s) {``        ` `        ``//To store answer``        ``int` `ans = ``0``;``        ` `        ``//To store count of '['``        ``int` `count = ``0``;``        ` `        ``//Size of string``        ``int` `n = s.length();``        ` `        ``//Traverse over the string``        ``for` `(``int` `i = ``0``; i < n; i++) {``            ``//When '[' encounters``            ``if` `(s.charAt(i) == ``'['``)``                ``count++;``            ``//when ']' encounters``            ``else``                ``count--;``            ``//When count becomes less than 0``            ``if` `(count < ``0``) {``                ``//Start searching for '[' from (i+1)th index``                ``int` `j = i + ``1``;``                ``while` `(j < n) {``                    ``//When jth index contains '['``                    ``if` `(s.charAt(j) == ``'['``)``                        ``break``;``                    ``j++;``                ``}``                ` `                ``//Increment answer``                ``ans += j - i;``                ` `                ``//Set Count to 1 again``                ``count = ``1``;``                ` `                ``//Bring character at jth position to ith position``                ``//and shift all character from i to j-1``                ``//towards right``                ``char` `ch = s.charAt(j);``                ``StringBuilder newString = ``new` `StringBuilder(s);``                ``for` `(``int` `k = j; k > i; k--) {``                    ``newString.setCharAt(k, s.charAt(k - ``1``));``                ``}``                ``newString.setCharAt(i, ch);``                ``s = newString.toString();``            ``}``        ``}` `        ``return` `ans;``    ``}``    ` `    ``// Driver code``    ``public` `static` `void` `main(String[] args) {``        ``String s = ``"[]][]["``;``        ``System.out.println(swapCount(s));` `        ``s = ``"[[][]]"``;``        ``System.out.println(swapCount(s));``    ``}``}`

## Python3

 `def` `swap_count(s):``    ``# To store the answer``    ``ans ``=` `0``    ` `    ``# To store the count of '['``    ``count ``=` `0``    ` `    ``# Size of the string``    ``n ``=` `len``(s)``    ` `    ``# Traverse over the string``    ``for` `i ``in` `range``(n):``        ``# When '[' encounters``        ``if` `s[i] ``=``=` `'['``:``            ``count ``+``=` `1``        ``# When ']' encounters``        ``else``:``            ``count ``-``=` `1``        ``# When count becomes less than 0``        ``if` `count < ``0``:``            ``# Start searching for '[' from (i+1)th index``            ``j ``=` `i ``+` `1``            ``while` `j < n:``                ``# When jth index contains '['``                ``if` `s[j] ``=``=` `'['``:``                    ``break``                ``j ``+``=` `1``            ``# Increment the answer``            ``ans ``+``=` `j ``-` `i``            ` `            ``# Set count to 1 again``            ``count ``=` `1``            ` `            ``# Bring the character at jth position to ith position``            ``# and shift all characters from i to j-1``            ``# towards the right``            ``ch ``=` `s[j]``            ``for` `k ``in` `range``(j, i, ``-``1``):``                ``s[k] ``=` `s[k ``-` `1``]``            ``s[i] ``=` `ch``    ``return` `ans` `# Driver code``if` `__name__ ``=``=` `"__main__"``:``    ``s ``=` `"[]][]["``    ``print``(swap_count(``list``(s)))` `    ``s ``=` `"[[][]]"``    ``print``(swap_count(``list``(s)))`

Output-

`20`

Time Complexity = O(N^2), one loop is for traversing the string and another loop in finding the next ‘[‘ when the count becomes less than 0 and making the string ready for the next step
Extra Space = O(1), because no extra space has been used

Optimized approach
We can initially go through the string and store the positions of ‘[‘ in a vector say ‘pos‘. Initialize ‘p’ to 0. We shall use p to traverse the vector ‘pos’. Similar to the naive approach, we maintain a count of encountered ‘[‘ brackets. When we encounter a ‘[‘ we increase the count and increase ‘p’ by 1. When we encounter a ‘]’ we decrease the count. If the count ever goes negative, this means we must start swapping. The element pos[p] tells us the index of the next ‘[‘. We increase the sum by pos[p] – i, where i is the current index. We can swap the elements in the current index and pos[p] and reset the count to 1 and increment p so that it pos[p] indicates to the next ‘[‘.
Since we have converted a step that was O(N) in the naive approach, to an O(1) step, our new time complexity reduces.

Time Complexity = O(N)
Extra Space = O(N)

## C++

 `// C++ program to count swaps required to balance string``#include ``#include ``#include ``using` `namespace` `std;` `// Function to calculate swaps required``long` `swapCount(string s)``{``    ``// Keep track of '['``    ``vector<``int``> pos;``    ``for` `(``int` `i = 0; i < s.length(); ++i)``        ``if` `(s[i] == ``'['``)``            ``pos.push_back(i);` `    ``int` `count = 0; ``// To count number of encountered '['``    ``int` `p = 0;  ``// To track position of next '[' in pos``    ``long` `sum = 0; ``// To store result` `    ``for` `(``int` `i = 0; i < s.length(); ++i)``    ``{``        ``// Increment count and move p to next position``        ``if` `(s[i] == ``'['``)``        ``{``            ``++count;``            ``++p;``        ``}``        ``else` `if` `(s[i] == ``']'``)``            ``--count;` `        ``// We have encountered an unbalanced part of string``        ``if` `(count < 0)``        ``{``            ``// Increment sum by number of swaps required``            ``// i.e. position of next '[' - current position``            ``sum += pos[p] - i;``            ``swap(s[i], s[pos[p]]);``            ``++p;` `            ``// Reset count to 1``            ``count = 1;``        ``}``    ``}``    ``return` `sum;``}` `// Driver code``int` `main()``{``    ``string s = ``"[]][]["``;``    ``cout << swapCount(s) << ``"\n"``;` `    ``s = ``"[[][]]"``;``    ``cout << swapCount(s) << ``"\n"``;``    ``return` `0;``}`

## Java

 `// Java program to count swaps``// required to balance string``import` `java.util.*;` `class` `GFG{``    ` `// Function to calculate swaps required``public` `static` `long` `swapCount(String s)``{``    ` `    ``// Keep track of '['``    ``Vector pos = ``new` `Vector();``    ``for``(``int` `i = ``0``; i < s.length(); ++i)``        ``if` `(s.charAt(i) == ``'['``)``            ``pos.add(i);``            ` `    ``// To count number of encountered '['``    ``int` `count = ``0``;``    ` `    ``// To track position of next '[' in pos``    ``int` `p = ``0``; ``    ` `    ``// To store result``    ``long` `sum = ``0``;``    ` `    ``char``[] S = s.toCharArray();``    ` `    ``for``(``int` `i = ``0``; i < s.length(); ++i)``    ``{``        ` `        ``// Increment count and move p``        ``// to next position``        ``if` `(S[i] == ``'['``)``        ``{``            ``++count;``            ``++p;``        ``}``        ``else` `if` `(S[i] == ``']'``)``            ``--count;`` ` `        ``// We have encountered an``        ``// unbalanced part of string``        ``if` `(count < ``0``)``        ``{``            ` `            ``// Increment sum by number of``            ``// swaps required i.e. position``            ``// of next '[' - current position``            ``sum += pos.get(p) - i;``            ``char` `temp = S[i];``            ``S[i] = S[pos.get(p)];``            ``S[pos.get(p)] = temp;``            ``++p;`` ` `            ``// Reset count to 1``            ``count = ``1``;``        ``}``    ``}``    ``return` `sum;``}` `// Driver code``public` `static` `void` `main(String[] args)``{``    ``String s = ``"[]][]["``;``    ``System.out.println(swapCount(s));`` ` `    ``s = ``"[[][]]"``;``    ``System.out.println(swapCount(s));``}``}` `// This code is contributed by divyesh072019`

## Python3

 `# Python3 Program to count``# swaps required to balance``# string` `# Function to calculate``# swaps required``def` `swapCount(s):` `    ``# Keep track of '['``    ``pos ``=` `[]` `    ``for` `i ``in` `range``(``len``(s)):``        ``if``(s[i] ``=``=` `'['``):``            ``pos.append(i)` `    ``# To count number``    ``# of encountered '['        ``    ``count ``=` `0``    ` `    ``# To track position``    ``# of next '[' in pos``    ``p ``=` `0`   `    ` `    ``# To store result``    ``sum` `=` `0`       `    ``s ``=` `list``(s)``    ` `    ``for` `i ``in` `range``(``len``(s)):` `        ``# Increment count and``        ``# move p to next position``        ``if``(s[i] ``=``=` `'['``):``            ``count ``+``=` `1``            ``p ``+``=` `1``        ``elif``(s[i] ``=``=` `']'``):``            ``count ``-``=` `1` `        ``# We have encountered an``        ``# unbalanced part of string``        ``if``(count < ``0``):``          ` `            ``# Increment sum by number``            ``# of swaps required``            ``# i.e. position of next``            ``# '[' - current position``            ``sum` `+``=` `pos[p] ``-` `i``            ``s[i], s[pos[p]] ``=` `(s[pos[p]],``                               ``s[i])``            ``p ``+``=` `1` `            ``# Reset count to 1``            ``count ``=` `1``    ``return` `sum` `# Driver code``s ``=` `"[]][]["``print``(swapCount(s))` `s ``=` `"[[][]]"``print``(swapCount(s))` `# This code is contributed by avanitrachhadiya2155`

## C#

 `// C# program to count swaps``// required to balance string``using` `System.IO;``using` `System;``using` `System.Collections;``using` `System.Collections.Generic;` `class` `GFG{` `// Function to calculate swaps required``static` `long` `swapCount(``string` `s)``{``    ` `    ``// Keep track of '['``    ``List<``int``> pos = ``new` `List<``int``>();``    ``for``(``int` `i = 0; i < s.Length; i++)``    ``{``        ``if` `(s[i] == ``'['``)``        ``{``            ``pos.Add(i);``        ``}``    ``}``    ` `    ``// To count number of encountered '['``    ``int` `count = 0;``    ` `    ``// To track position of next '[' in pos``    ``int` `p = 0;``    ` `    ``// To store result``    ``long` `sum = 0;``    ` `    ``char``[] S = s.ToCharArray();``    ` `    ``for``(``int` `i = 0; i < S.Length; i++)``    ``{``        ` `        ``// Increment count and move p``        ``// to next position``        ``if` `(S[i] == ``'['``)``        ``{``            ``++count;``            ``++p;``        ``}``        ``else` `if` `(S[i] == ``']'``)``        ``{``            ``--count;``        ``}``        ` `        ``// We have encountered an``        ``// unbalanced part of string``        ``if` `(count < 0)``        ``{``            ` `            ``// Increment sum by number of``            ``// swaps required i.e. position``            ``// of next '[' - current position``            ``sum += pos[p]-i;``            ``char` `temp = S[i];``            ``S[i] = S[pos[p]];``            ``S[pos[p]] = temp;``            ``++p;``            ` `            ``// Reset count to 1``            ``count = 1;``        ``}``    ``}``    ``return` `sum;``}` `// Driver code``static` `void` `Main()``{``    ``string` `s = ``"[]][]["``;``    ``Console.WriteLine(swapCount(s));``    ` `    ``s = ``"[[][]]"``;``    ``Console.WriteLine(swapCount(s));``}``}` `// This code is contributed by rag2127`

## Javascript

 ``

Output

```2
0

```

Time Complexity: O(N)
Auxiliary Space: O(N)

Another Method:
We can do without having to store the positions of ‘[‘.

Below is the implementation :

## C++

 `// C++ program to count swaps required``// to balance string``#include ``using` `namespace` `std;` `long` `swapCount(string chars)``{``    ` `    ``// Stores total number of Left and``    ``// Right brackets encountered``    ``int` `countLeft = 0, countRight = 0;``    ` `    ``// swap stores the number of swaps``    ``// required imbalance maintains``    ``// the number of imbalance pair``    ``int` `swap = 0 , imbalance = 0;``     ` `    ``for``(``int` `i = 0; i < chars.length(); i++)``    ``{``        ``if` `(chars[i] == ``'['``)``        ``{``            ` `            ``// Increment count of Left bracket``            ``countLeft++;``            ` `            ``if` `(imbalance > 0)``            ``{``                ` `                ``// swaps count is last swap count + total``                ``// number imbalanced brackets``                ``swap += imbalance;``                ` `                ``// imbalance decremented by 1 as it solved``                ``// only one imbalance of Left and Right``                ``imbalance--;    ``            ``}``        ``}``        ``else` `if``(chars[i] == ``']'` `)``        ``{``            ` `            ``// Increment count of Right bracket``            ``countRight++;``            ` `            ``// imbalance is reset to current difference``            ``// between Left and Right brackets``            ``imbalance = (countRight - countLeft);``        ``}``    ``}``    ``return` `swap;``}` `// Driver code ``int` `main()``{``    ``string s = ``"[]][]["``;``    ``cout << swapCount(s) << endl;` `    ``s = ``"[[][]]"``;``    ``cout << swapCount(s) << endl;` `    ``return` `0;``}` `// This code is contributed by divyeshrabadiya07`

## Java

 `// Java Program to count swaps required to balance string``public` `class` `BalanceParan``{``    ` `    ``static` `long` `swapCount(String s)``    ``{``        ``char``[] chars = s.toCharArray();``        ` `        ``// stores total number of Left and Right``        ``// brackets encountered``        ``int` `countLeft = ``0``, countRight = ``0``;``                ``// swap stores the number of swaps required``        ``//imbalance maintains the number of imbalance pair``        ``int` `swap = ``0` `, imbalance = ``0``;``        ` `        ``for``(``int` `i =``0``; i< chars.length; i++)``        ``{``            ``if``(chars[i] == ``'['``)``            ``{``                ``// increment count of Left bracket``                ``countLeft++;``                ``if``(imbalance > ``0``)``                ``{``                    ``// swaps count is last swap count + total``                    ``// number imbalanced brackets``                    ``swap += imbalance;``                    ``// imbalance decremented by 1 as it solved``                    ``// only one imbalance of Left and Right``                    ``imbalance--;    ``                ``}``            ``} ``else` `if``(chars[i] == ``']'` `)``            ``{``                ``// increment count of Right bracket``                ``countRight++;``                ``// imbalance is reset to current difference``                ``// between Left and Right brackets``                ``imbalance = (countRight-countLeft);``            ``}``        ``}``        ``return` `swap;``    ``}` `// Driver code``    ``public` `static` `void` `main(String args[])``    ``{``        ``String s = ``"[]][]["``;``        ``System.out.println(swapCount(s) );` `        ``s = ``"[[][]]"``;``        ``System.out.println(swapCount(s) );``        ` `    ``}``}``// This code is contributed by Janmejaya Das.`

## Python3

 `# Python3 program to count swaps required to``# balance string``def` `swapCount(s):``    ` `    ` `    ` `    ``# Swap stores the number of swaps ``    ``# required imbalance maintains the``    ``# number of imbalance pair``    ``swap ``=` `0``    ``imbalance ``=` `0``;``    ` `    ``for` `i ``in` `s:``        ``if` `i ``=``=` `'['``:``            ` `            ``# Decrement the imbalance``            ``imbalance ``-``=` `1``        ``else``:``            ` `            ``# Increment imbalance``            ``imbalance ``+``=` `1``            ` `            ``if` `imbalance > ``0``:``                ``swap ``+``=` `imbalance` `    ``return` `swap` `# Driver code``s ``=` `"[]][]["``;``print``(swapCount(s))` `s ``=` `"[[][]]"``;``print``(swapCount(s))` `# This code is contributed by Prateek Gupta and improved by Anvesh Govind Saxena`

## C#

 `// C# Program to count swaps required``// to balance string``using` `System;` `class` `GFG``{` `public` `static` `long` `swapCount(``string` `s)``{``    ``char``[] chars = s.ToCharArray();` `    ``// stores the total number of Left and``    ``// Right brackets encountered``    ``int` `countLeft = 0, countRight = 0;``    ` `    ``// swap stores the number of swaps``    ``// required imbalance maintains the``    ``// number of imbalance pair``    ``int` `swap = 0, imbalance = 0;` `    ``for` `(``int` `i = 0; i < chars.Length; i++)``    ``{``        ``if` `(chars[i] == ``'['``)``        ``{``            ``// increment count of Left bracket``            ``countLeft++;``            ``if` `(imbalance > 0)``            ``{``                ``// swaps count is last swap count + total``                ``// number imbalanced brackets``                ``swap += imbalance;``                ` `                ``// imbalance decremented by 1 as it solved``                ``// only one imbalance of Left and Right``                ``imbalance--;``            ``}``        ``}``        ``else` `if` `(chars[i] == ``']'``)``        ``{``            ``// increment count of Right bracket``            ``countRight++;``            ` `            ``// imbalance is reset to current difference``            ``// between Left and Right brackets``            ``imbalance = (countRight - countLeft);``        ``}``    ``}``    ``return` `swap;``}` `// Driver code``public` `static` `void` `Main(``string``[] args)``{``    ``string` `s = ``"[]][]["``;``    ``Console.WriteLine(swapCount(s));` `    ``s = ``"[[][]]"``;``    ``Console.WriteLine(swapCount(s));``}``}` `// This code is contributed by Shrikant13`

## Javascript

 ``

Output

```2
0

```

Time Complexity :O(N)
Auxiliary Space : O(1)

This article is contributed by Aarti_Rathi and Aditya Kamath. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.