Skip to content
Related Articles

Related Articles

Minimum sum possible by removing all occurrences of any array element
  • Last Updated : 05 Feb, 2021

Given an array arr[] consisting of N integers, the task is to find the minimum possible sum of the array by removing all occurrences of any single array element.

Examples:

Input: N = 4, arr[] = {4, 5, 6, 6}
Output: 9
Explanation: 
All distinct array elements are {4, 5, 6}. 
Removing all occurrences of 4 modifies arr[] to {5, 6, 6}
Sum of the array = 17.
Removing all occurrences of 5 modifies arr[] to {4, 6, 6}
Sum of the array = 16.
Removing all occurrences of 6 modifies arr[] to {4, 5}
Sum of the array = 9.
Therefore, the minimum sum possible is 9, which is attained by deleting all occurrences of 6.

Input: N = 3, arr[] = {2, 2, 2}
Output: 0

Approach: The idea to solve this problem is to first find the frequency of each element in the array and the sum of the array. Then for each unique element, find the minimum sum by finding the difference between the sum and product of the array element and its frequency.



Follow the steps below to solve the problem:

  • Initialize a map, say mp, to store the frequency of array elements and a variable, say minSum, to store the minimum sum obtained after removing all occurrences of any array element.
  • Traverse the array arr[] to count the frequency of each array element and store it in a Map and calculate the sum of all array elements and store it in sum.
  • Traverse the map and for each key-value pair, perform the following operations:
    • Subtract the product of the element and its occurrences from the sum and store the minimum sum obtained in minSum.
  • Return minSum as the minimum sum obtained.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find minimum sum after deletion
int minSum(int A[], int N)
{
    // Stores frequency of
    // array elements
    map<int, int> mp;
 
    int sum = 0;
 
    // Traverse the array
    for (int i = 0; i < N; i++) {
 
        // Calculate sum
        sum += A[i];
 
        // Update frequency of
        // the current element
        mp[A[i]]++;
    }
 
    // Stores the minimum
    // sum required
    int minSum = INT_MAX;
 
    // Traverse map
    for (auto it : mp) {
 
        // Find the minimum sum obtained
        minSum = min(
            minSum, sum - (it.first * it.second));
    }
 
    // Return minimum sum
    return minSum;
}
 
// Driver code
int main()
{
    // Input array
    int arr[] = { 4, 5, 6, 6 };
 
    // Size of array
    int N = sizeof(arr) / sizeof(arr[0]);
 
    cout << minSum(arr, N) << "\n";
}

Java




// Java program for the above approach
import java.util.*;
class GFG
{
 
// Function to find minimum sum after deletion
static int minSum(int A[], int N)
{
   
    // Stores frequency of
    // array elements
    HashMap<Integer,Integer> mp = new HashMap<Integer,Integer>();
    int sum = 0;
 
    // Traverse the array
    for (int i = 0; i < N; i++)
    {
 
        // Calculate sum
        sum += A[i];
 
        // Update frequency of
        // the current element
        if(mp.containsKey(A[i]))
        {
            mp.put(A[i], mp.get(A[i]) + 1);
        }
        else
        {
            mp.put(A[i], 1);
        }
    }
 
    // Stores the minimum
    // sum required
    int minSum = Integer.MAX_VALUE;
 
    // Traverse map
    for (Map.Entry<Integer,Integer> it : mp.entrySet())
    {
 
        // Find the minimum sum obtained
        minSum = Math.min(
            minSum, sum - (it.getKey() * it.getValue()));
    }
 
    // Return minimum sum
    return minSum;
}
 
// Driver code
public static void main(String[] args)
{
   
    // Input array
    int arr[] = { 4, 5, 6, 6 };
 
    // Size of array
    int N = arr.length;
    System.out.print(minSum(arr, N)+ "\n");
}
}
 
// This code is contributed by 29AjayKumar

Python3




# Python program for the above approach
 
# Function to find minimum sum after deletion
def minSum(A, N):
   
    # Stores frequency of
    # array elements
    mp = {}
    sum = 0
 
    # Traverse the array
    for i in range(N):
 
        # Calculate sum
        sum += A[i]
 
        # Update frequency of
        # the current element
        if A[i] in mp:
            mp[A[i]] += 1
        else:
            mp[A[i]] = 1
 
    # Stores the minimum
    # sum required
    minSum = float('inf')
 
    # Traverse map
    for it in mp:
 
        # Find the minimum sum obtained
        minSum = min(minSum, sum - (it * mp[it]))
     
    # Return minimum sum
    return minSum
 
# Driver code
# Input array
arr = [ 4, 5, 6, 6 ]
 
# Size of array
N = len(arr)
print(minSum(arr, N))
 
# This code is contributed by rohitsingh07052.

C#




// C# program for the above approach
using System;
using System.Collections.Generic;
public class GFG
{
 
  // Function to find minimum sum after deletion
  static int minSum(int []A, int N)
  {
 
    // Stores frequency of
    // array elements
    Dictionary<int,int> mp = new Dictionary<int,int>();
    int sum = 0;
 
    // Traverse the array
    for (int i = 0; i < N; i++)
    {
 
      // Calculate sum
      sum += A[i];
 
      // Update frequency of
      // the current element
      if(mp.ContainsKey(A[i]))
      {
        mp[A[i]] = mp[A[i]] + 1;
      }
      else
      {
        mp.Add(A[i], 1);
      }
    }
 
    // Stores the minimum
    // sum required
    int minSum = int.MaxValue;
 
    // Traverse map
    foreach (KeyValuePair<int,int> it in mp)
    {
 
      // Find the minimum sum obtained
      minSum = Math.Min(
        minSum, sum - (it.Key * it.Value));
    }
 
    // Return minimum sum
    return minSum;
  }
 
  // Driver code
  public static void Main(String[] args)
  {
 
    // Input array
    int []arr = { 4, 5, 6, 6 };
 
    // Size of array
    int N = arr.Length;
    Console.Write(minSum(arr, N)+ "\n");
  }
}
 
// This code is contributed by 29AjayKumar

 
 

Output: 
9

 

Time Complexity: O(N)
Auxiliary Space: O(N) 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :