Minimum Sum Path In 3-D Array

3.6

Given a 3-D array arr[l][m][n], the task is to find the minimum path sum from the first cell of array to the last cell of array. We can only traverse to adjacent element, i.e., from a given cell (i, j, k), cells (i+1, j, k), (i, j+1, k) and (i, j, k+1) can be traversed, diagonal traversing is not allowed, We may assume that all costs are positive integers.

Examples:

Input : arr[][][]= { {{1, 2}, {3, 4}},
                     {{4, 8}, {5, 2}} };
Output : 9
Explanation : arr[0][0][0] + arr[0][0][1] + 
              arr[0][1][1] + arr[1][1][1]

Input : { { {1, 2}, {4, 3}},
          { {3, 4}, {2, 1}} };
Output : 7
Explanation : arr[0][0][0] + arr[0][0][1] + 
              arr[0][1][1] + arr[1][1][1]

Let us consider a 3-D array arr[2][2][2] represented by a cuboid having values as:

arr[][][] = {{{1, 2}, {3, 4}},
            { {4, 8}, {5, 2}}};
Result = 9 is calculated as:

This problem is similar to Min cost path. and can be solved using Dynamic Programming/

// Array for storing result
int tSum[l][m][n];

tSum[0][0][0] = arr[0][0][0];

/* Initialize first row of tSum array */
for (i = 1; i < l; i++)
  tSum[i][0][0] = tSum[i-1][0][0] + arr[i][0][0];

/* Initialize first column of tSum array */
for (j = 1; j < m; j++)
  tSum[0][j][0] = tSum[0][j-1][0] + arr[0][j][0];

/* Initialize first width of tSum array */
for (k = 1; k < n; k++)
  tSum[0][0][k] = tSum[0][0][k-1] + arr[0][0][k];

/* Initialize first row- First column of tSum
   array */
for (i = 1; i < l; i++)
  for (j = 1; j < m; j++)
     tSum[i][j][0] = min(tSum[i-1][j][0],
                         tSum[i][j-1][0],
                         INT_MAX)
                        + arr[i][j][0];


/* Initialize first row- First width of tSum
   array */
for (i = 1; i < l; i++)
  for (k = 1; k < n; k++)
    tSum[i][0][k] = min(tSum[i-1][0][k],
                        tSum[i][0][k-1],
                        INT_MAX)
                     + arr[i][0][k];


/* Initialize first width- First column of
   tSum array */
for (k = 1; k < n; k++)
  for (j = 1; j < m; j++)
     tSum[0][j][k] = min(tSum[0][j][k-1],
                         tSum[0][j-1][k],
                         INT_MAX)
                      + arr[0][j][k];

/* Construct rest of the tSum array */
for (i = 1; i < l; i++)
  for (j = 1; j < m; j++)
    for (k = 1; k < n; k++)
       tSum[i][j][k] = min(tSum[i-1][j][k],
                           tSum[i][j-1][k],
                           tSum[i][j][k-1])
                      + arr[i][j][k];

return tSum[l-1][m-1][n-1];


C++

// C++ program for Min path sum of 3D-array
#include<bits/stdc++.h>
using namespace std;
#define l 3
#define m 3
#define n 3

// A utility function that returns minimum
// of 3 integers
int min(int x, int y, int z)
{
  return (x < y)? ((x < z)? x : z) :
          ((y < z)? y : z);
}

// function to calculate MIN path sum of 3D array
int minPathSum(int arr[][m][n])
{
  int i, j, k;
  int tSum[l][m][n];

  tSum[0][0][0] = arr[0][0][0];

  /* Initialize first row of tSum array */
  for (i = 1; i < l; i++)
    tSum[i][0][0] = tSum[i-1][0][0] + arr[i][0][0];

  /* Initialize first column of tSum array */
  for (j = 1; j < m; j++)
    tSum[0][j][0] = tSum[0][j-1][0] + arr[0][j][0];

  /* Initialize first width of tSum array */
  for (k = 1; k < n; k++)
    tSum[0][0][k] = tSum[0][0][k-1] + arr[0][0][k];

  /* Initialize first row- First column of
     tSum array */
  for (i = 1; i < l; i++)
    for (j = 1; j < m; j++)
      tSum[i][j][0] = min(tSum[i-1][j][0],
                          tSum[i][j-1][0],
                          INT_MAX)
                    + arr[i][j][0];


  /* Initialize first row- First width of
     tSum array */
  for (i = 1; i < l; i++)
    for (k = 1; k < n; k++)
      tSum[i][0][k] = min(tSum[i-1][0][k],
                          tSum[i][0][k-1],
                          INT_MAX)
                    + arr[i][0][k];


  /* Initialize first width- First column of
     tSum array */
  for (k = 1; k < n; k++)
    for (j = 1; j < m; j++)
      tSum[0][j][k] = min(tSum[0][j][k-1],
                          tSum[0][j-1][k],
                          INT_MAX)
                    + arr[0][j][k];

  /* Construct rest of the tSum array */
  for (i = 1; i < l; i++)
    for (j = 1; j < m; j++)
      for (k = 1; k < n; k++)
        tSum[i][j][k] = min(tSum[i-1][j][k],
                            tSum[i][j-1][k],
                            tSum[i][j][k-1])
                        + arr[i][j][k];

  return tSum[l-1][m-1][n-1];

}

// Driver program
int main()
{
  int arr[l][m][n] = { { {1, 2, 4}, {3, 4, 5}, {5, 2, 1}},
    { {4, 8, 3}, {5, 2, 1}, {3, 4, 2}},
    { {2, 4, 1}, {3, 1, 4}, {6, 3, 8}}
  };
  cout << minPathSum(arr);
  return 0;
}

Java

// Java program for Min path sum of 3D-array
import java.io.*;

class GFG {
    
    static int l =3;
    static int m =3;
    static int n =3;
    
    // A utility function that returns minimum
    // of 3 integers
    static int min(int x, int y, int z)
    {
         return (x < y)? ((x < z)? x : z) :
                ((y < z)? y : z);
    }
    
    // function to calculate MIN path sum of 3D array
    static int minPathSum(int arr[][][])
    {
        int i, j, k;
        int tSum[][][] =new int[l][m][n];
        
        tSum[0][0][0] = arr[0][0][0];
        
        /* Initialize first row of tSum array */
        for (i = 1; i < l; i++)
            tSum[i][0][0] = tSum[i-1][0][0] + arr[i][0][0];
        
        /* Initialize first column of tSum array */
        for (j = 1; j < m; j++)
            tSum[0][j][0] = tSum[0][j-1][0] + arr[0][j][0];
        
        /* Initialize first width of tSum array */
        for (k = 1; k < n; k++)
            tSum[0][0][k] = tSum[0][0][k-1] + arr[0][0][k];
        
        /* Initialize first row- First column of
            tSum array */
        for (i = 1; i < l; i++)
            for (j = 1; j < m; j++)
            tSum[i][j][0] = min(tSum[i-1][j][0],
                                tSum[i][j-1][0],
                                Integer.MAX_VALUE)
                            + arr[i][j][0];
        
        
        /* Initialize first row- First width of
            tSum array */
        for (i = 1; i < l; i++)
            for (k = 1; k < n; k++)
            tSum[i][0][k] = min(tSum[i-1][0][k],
                                tSum[i][0][k-1],
                                Integer.MAX_VALUE)
                            + arr[i][0][k];
        
        
        /* Initialize first width- First column of
            tSum array */
        for (k = 1; k < n; k++)
            for (j = 1; j < m; j++)
            tSum[0][j][k] = min(tSum[0][j][k-1],
                                tSum[0][j-1][k],
                                Integer.MAX_VALUE)
                            + arr[0][j][k];
        
        /* Construct rest of the tSum array */
        for (i = 1; i < l; i++)
            for (j = 1; j < m; j++)
            for (k = 1; k < n; k++)
                tSum[i][j][k] = min(tSum[i-1][j][k],
                                    tSum[i][j-1][k],
                                    tSum[i][j][k-1])
                                + arr[i][j][k];
        
        return tSum[l-1][m-1][n-1];
        
    }
    
    // Driver program
    public static void main (String[] args)
    {
        int arr[][][] = { { {1, 2, 4}, {3, 4, 5}, {5, 2, 1}},
                          { {4, 8, 3}, {5, 2, 1}, {3, 4, 2}},
                          { {2, 4, 1}, {3, 1, 4}, {6, 3, 8}}
                        };
        System.out.println ( minPathSum(arr));
            
    }
}

// This code is contributed by vt_m


Output :

20

Time Complexity : O(l*m*n)
Auxiliary Space : O(l*m*n)

This article is contributed by Shivam Pradhan (anuj_charm). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

GATE CS Corner    Company Wise Coding Practice

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

Recommended Posts:



3.6 Average Difficulty : 3.6/5.0
Based on 10 vote(s)