# Minimum sum falling path in a NxN grid

Given an square array A of integers of size NxN. The task is to find the minimum sum of a falling path through A.
A falling path will starts at any element in the first row and ends in last row. It chooses one element from each next row. The next row’s choice must be in a column that is different from the previous row’s column by at most one.

Examples:

Input: N = 2
mat =
{{5, 10},
{25, 15}}
Output: 20
Selected elements are 5, 15.

Input: N = 3
mat =
{{1, 2, 3},
{ 4, 5, 6},
{ 7, 8, 9}}
Output: 12
Selected elements are 1, 4, 7.


## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: This problem has an optimal substructure, meaning that the solutions to sub-problems can be used to solve larger instances of this problem. This makes dynamic programming came into existence.

Let dp[R][C] be the minimum total weight of a falling path starting at [R, C] in first row and reaching to the bottom row of A.

Then, , and the answer is minimum value of first row i:e .

We would make an auxiliary array dp to cache intermediate values dp[R][C]. However, we will use A to cache these values. Our goal is to transform the values of A into the values of dp.

We begins processing each row, starting with the second last row. We set , handling boundary conditions gracefully.

Explanation of above Approach:
Let’s look at the recursion a little more to get a handle on why it works. For an array like A = [[1, 2, 3], [4, 5, 6], [7, 8, 9]], imagine you are at (1, 0) (A = 4). You can either go to (2, 0) and get a weight of 7, or (2, 1) and get a weight of 8. Since 7 is lower, we say that the minimum total weight at (1, 0) is dp(1, 0) = 5 + 7 (7 for the original A[R][C].)

After visiting (1, 0), (1, 1), and (1, 2), A [which is storing the values of our dp], looks like [[1, 2, 3], [11, 12, 14], [7, 8, 9]]. We do this procedure again by visiting (0, 0), (0, 1), (0, 2).
We get , and the final answer is min(A[C]) = 12 for all C in range 0 to n.

Below is the implementation of above approach.

## C++

 // C++ Program to minimum required sum  #include  using namespace std;     const int n = 3;     // Function to return minimum path falling sum  int minFallingPathSum(int (&A)[n][n])  {         // R = Row and C = Column      // We begin from second last row and keep      // adding maximum sum.      for (int R = n - 2; R >= 0; --R) {          for (int C = 0; C < n; ++C) {                 // best = min(A[R+1][C-1], A[R+1][C], A[R+1][C+1])              int best = A[R + 1][C];              if (C > 0)                  best = min(best, A[R + 1][C - 1]);              if (C + 1 < n)                  best = min(best, A[R + 1][C + 1]);              A[R][C] = A[R][C] + best;          }      }         int ans = INT_MAX;      for (int i = 0; i < n; ++i)          ans = min(ans, A[i]);      return ans;  }     // Driver program  int main()  {         int A[n][n] = { { 1, 2, 3 },                      { 4, 5, 6 },                      { 7, 8, 9 } };         // function to print required answer      cout << minFallingPathSum(A);         return 0;  }

## Java

 // Java Program to minimum required sum     import java.io.*;     class GFG {  static int n = 3;     // Function to return minimum path falling sum  static int minFallingPathSum(int A[][])  {         // R = Row and C = Column      // We begin from second last row and keep      // adding maximum sum.      for (int R = n - 2; R >= 0; --R) {          for (int C = 0; C < n; ++C) {                 // best = min(A[R+1][C-1], A[R+1][C], A[R+1][C+1])              int best = A[R + 1][C];              if (C > 0)                  best = Math.min(best, A[R + 1][C - 1]);              if (C + 1 < n)                  best = Math.min(best, A[R + 1][C + 1]);              A[R][C] = A[R][C] + best;          }      }         int ans = Integer.MAX_VALUE;      for (int i = 0; i < n; ++i)          ans = Math.min(ans, A[i]);      return ans;  }     // Driver program  public static void main (String[] args) {              int A[][] = { { 1, 2, 3 },                      { 4, 5, 6 },                      { 7, 8, 9 } };         // function to print required answer      System.out.println( minFallingPathSum(A));      }  }  // This code is contributed by inder_verma..

## Python 3

 # Python3 Program to minimum   # required sum   import sys     n = 3    # Function to return minimum   # path falling sum   def minFallingPathSum(A) :         # R = Row and C = Column       # We begin from second last row and keep       # adding maximum sum.       for R in range(n - 2, -1, -1) :          for C in range(n) :                 # best = min(A[R+1][C-1], A[R+1][C],              # A[R+1][C+1])               best = A[R + 1][C]              if C > 0 :                  best = min(best, A[R + 1][C - 1])              if C + 1 < n :                  best = min(best, A[R + 1][C + 1])                 A[R][C] = A[R][C] + best         ans = sys.maxsize         for i in range(n) :          ans = min(ans, A[i])                 return ans                       # Driver code  if __name__ == "__main__" :         A = [ [ 1, 2, 3],          [ 4, 5, 6],          [ 7, 8, 9] ]         # function to print required answer       print(minFallingPathSum(A))     # This code is contributed by   # ANKITRAI1

## C#

 // C# Program to minimum required sum     using System;     class GFG {  static int n = 3;     // Function to return minimum path falling sum  static int minFallingPathSum(int[,] A)  {         // R = Row and C = Column      // We begin from second last row and keep      // adding maximum sum.      for (int R = n - 2; R >= 0; --R) {          for (int C = 0; C < n; ++C) {                 // best = min(A[R+1,C-1], A[R+1,C], A[R+1,C+1])              int best = A[R + 1,C];              if (C > 0)                  best = Math.Min(best, A[R + 1,C - 1]);              if (C + 1 < n)                  best = Math.Min(best, A[R + 1,C + 1]);              A[R,C] = A[R,C] + best;          }      }         int ans = int.MaxValue;      for (int i = 0; i < n; ++i)          ans = Math.Min(ans, A[0,i]);      return ans;  }     // Driver program  public static void Main () {              int[,] A = { { 1, 2, 3 },                      { 4, 5, 6 },                      { 7, 8, 9 } };         // function to print required answer      Console.WriteLine( minFallingPathSum(A));      }  }  // This code is contributed by Subhadeep..

Output:

12


Time Complexity: O(N2)

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.