Minimum substring reversals required to make given Binary String alternating
Given a binary string S of length N, the task is to count the minimum number substrings of S that is required to be reversed to make the string S alternating. If it is not possible to make string alternating, then print “-1”.
Examples:
Input: S = “10001110”
Output: 2
Explanation:
In the first operation, reversing the substring {S[3], .., S[6]} modifies the string to “10110010”.
In the second operation, reversing the substring {S[4], .. S[5]}modifies the string to “10101010”, which is alternating.Input: S = “100001”
Output: -1
Explanation: Not possible to obtain an alternating binary string.
Approach: The idea is based on the observation that when a substring s[L, R] is reversed, then no more than two pairs s[L – 1], s[L] and s[R], S[R + 1] are changed. Moreover, one pair should be a consecutive pair of 00 and the other 11. So, the minimum number of operations can be obtained by pairing 00 with 11 or with the left/right border of S. Thus, the required number of operations is half of the number of consecutive pairs of the same character. Follow the steps below to solve the problem:
- Traverse the string S to count the number of 1s and 0s and store them in sum1 and sum0 respectively.
- If the absolute difference of sum1 and sum0 > 1, then print “-1”.
- Otherwise, find the count of consecutive characters that are the same in the string S. Let that count be K for 1 and L for 0.
- After completing the above steps, print the value of K as the result.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to count the minimum number // of substrings required to be reversed // to make the string S alternating int minimumReverse(string s, int n) { // Store count of consecutive pairs int k = 0 , l = 0 ; // Stores the count of 1s and 0s int sum1 = 0, sum0 = 0; // Traverse through the string for ( int i = 1; i < n; i++) { if (s[i] == '1' ) // Increment 1s count sum1++; else // Increment 0s count sum0++; // Increment K if consecutive // same elements are found if (s[i] == s[i - 1]&& s[i] == '0' ) k++; else if ( s[i] == s[i - 1]&& s[i] == '1' ) l++; } // Increment 1s count if (s[0]== '1' ) sum1++; else // Increment 0s count sum0++; // Check if it is possible or not if ( abs (sum1 - sum0) > 1) return -1; // Otherwise, print the number // of required operations return max(k , l ); } // Driver Code int main() { string S = "10001" ; int N = S.size(); // Function Call cout << minimumReverse(S, N); return 0; } |
Java
// Java program for the above approach import java.util.*; import java.lang.*; class GFG { // Function to count the minimum number // of substrings required to be reversed // to make the string S alternating static int minimumReverse(String s, int n) { // Store count of consecutive pairs int k = 0 , l = 0 ; // Stores the count of 1s and 0s int sum1 = 0 , sum0 = 0 ; // Traverse through the string for ( int i = 1 ; i < n; i++) { if (s.charAt(i) == '1' ) // Increment 1s count sum1++; else // Increment 0s count sum0++; // Increment K if consecutive // same elements are found if (s.charAt(i) == s.charAt(i - 1 ) && s.charAt(i) == '0' ) k++; else if ( s.charAt(i) == s.charAt(i - 1 ) && s.charAt(i) == '1' ) l++; } // Increment 1s count if (s.charAt( 0 )== '1' ) sum1++; else // Increment 0s count sum0++; // Check if it is possible or not if (Math.abs(sum1 - sum0) > 1 ) return - 1 ; // Otherwise, print the number // of required operations return Math.max(k , l); } // Driver code public static void main (String[] args) { String S = "10001" ; int N = S.length(); // Function Call System.out.print(minimumReverse(S, N)); } } // This code is contributed by offbeat |
Python3
# Python program for the above approach # Function to count the minimum number # of substrings required to be reversed # to make the string S alternating def minimumReverse(s, n): # Store count of consecutive pairs k = 0 ; l = 0 ; # Stores the count of 1s and 0s sum1 = 0 ; sum0 = 0 ; # Traverse through the string for i in range ( 1 , n): if (s[i] = = '1' ): # Increment 1s count sum1 + = 1 ; else : # Increment 0s count sum0 + = 1 ; # Increment K if consecutive # same elements are found if (s[i] = = s[i - 1 ] and s[i] = = '0' ): k + = 1 ; elif (s[i] = = s[i - 1 ] and s[i] = = '1' ): l + = 1 ; # Increment 1s count if (s[ 0 ] = = '1' ): sum1 + = 1 ; else : # Increment 0s count sum0 + = 1 ; # Check if it is possible or not if ( abs (sum1 - sum0) > 1 ): return - 1 ; # Otherwise, print the number # of required operations return max (k, l); # Driver code if __name__ = = '__main__' : S = "10001" ; N = len (S); # Function Call print (minimumReverse(S, N)); # This code is contributed by shikhasingrajput |
C#
// C# program for the above approach using System; public class GFG { // Function to count the minimum number // of substrings required to be reversed // to make the string S alternating static int minimumReverse(String s, int n) { // Store count of consecutive pairs int k = 0 , l = 0 ; // Stores the count of 1s and 0s int sum1 = 0, sum0 = 0; // Traverse through the string for ( int i = 1; i < n; i++) { if (s[i] == '1' ) // Increment 1s count sum1++; else // Increment 0s count sum0++; // Increment K if consecutive // same elements are found if (s[i] == s[i-1] && s[i] == '0' ) k++; else if ( s[i] == s[i-1] && s[i] == '1' ) l++; } // Increment 1s count if (s[0] == '1' ) sum1++; else // Increment 0s count sum0++; // Check if it is possible or not if (Math.Abs(sum1 - sum0) > 1) return -1; // Otherwise, print the number // of required operations return Math.Max(k , l); } // Driver code public static void Main(String[] args) { String S = "10001" ; int N = S.Length; // Function Call Console.Write(minimumReverse(S, N)); } } // This code is contributed by shikhasingrajput |
Javascript
<script> // JavaScript program to implement // the above approach // Function to count the minimum number // of substrings required to be reversed // to make the string S alternating function minimumReverse(s, n) { // Store count of consecutive pairs let k = 0 , l = 0 ; // Stores the count of 1s and 0s let sum1 = 0, sum0 = 0; // Traverse through the string for (let i = 1; i < n; i++) { if (s[i] == '1' ) // Increment 1s count sum1++; else // Increment 0s count sum0++; // Increment K if consecutive // same elements are found if (s[i] == s[i-1] && s[i] == '0' ) k++; else if ( s[i] == s[i-1] && s[i] == '1' ) l++; } // Increment 1s count if (s[0] == '1' ) sum1++; else // Increment 0s count sum0++; // Check if it is possible or not if (Math.abs(sum1 - sum0) > 1) return -1; // Otherwise, print the number // of required operations return Math.max(k , l); } // Driver code let S = "10001" ; let N = S.length; // Function Call document.write(minimumReverse(S, N)); </script> |
2
Time Complexity: O(N)
Auxiliary Space: O(1)
Please Login to comment...