Given an integer N, the task is to find the minimum number of operations needed to obtain the number N starting from 1. Below are the operations:
- Add 1 to the current number.
- Multiply the current number by 2.
- Multiply the current number by 3.
Print the minimum number of operations required and the corresponding sequence to obtain N.
Examples:
Input: N = 3
Output:
1
1 3
Explanation:
Operation 1: Multiply 1 * 3 = 3.
Hence, only 1 operation is required.Input: N = 5
Output:
3
1 2 4 5
Explanation:
The minimum required operations are as follows:
1 * 2 -> 2
2 * 2 -> 4
4 + 1 -> 5
Recursive Approach: Recursively generate every possible combination to reduce N to 1 and calculate the number of operations required. Finally, after exhausting all possible combinations, print the sequence that required the minimum number of operations.
Below is the implementation of the above approach:
// C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std;
vector< int > find_sequence( int n)
{ // Base Case
if (n == 1)
return {1, -1};
// Recursive Call for n-1
auto arr = find_sequence(n - 1);
vector< int > ans = {arr[0] + 1, n - 1};
// Check if n is divisible by 2
if (n % 2 == 0)
{
vector< int > div_by_2 = find_sequence(n / 2);
if (div_by_2[0] < ans[0])
ans = {div_by_2[0] + 1, n / 2};
}
// Check if n is divisible by 3
if (n % 3 == 0)
{
vector< int > div_by_3 = find_sequence(n / 3);
if (div_by_3[0] < ans[0])
vector< int > ans = {div_by_3[0] + 1, n / 3};
}
// Returns a tuple (a, b), where
// a: Minimum steps to obtain x from 1
// b: Previous number
return ans;
} // Function that find the optimal // solution vector< int > find_solution( int n)
{ auto a = find_sequence(n);
// Print the length
cout << a[0] << endl;
vector< int > sequence;
sequence.push_back(n);
//Exit condition for loop = -1
//when n has reached 1
while (a[1] != -1)
{
sequence.push_back(a[1]);
auto arr = find_sequence(a[1]);
a[1] = arr[1];
}
// Return the sequence
// in reverse order
reverse(sequence.begin(),
sequence.end());
return sequence;
} // Driver Code int main()
{ // Given N
int n = 5;
// Function call
auto i = find_solution(n);
for ( int j : i)
cout << j << " " ;
} // This code is contributed by mohit kumar 29 |
// Java program to implement // the above approach import java.util.*;
import java.util.Collections;
import java.util.Vector;
//Vector<Integer> v = new Vector<Integer>(n); class GFG{
static Vector<Integer> find_sequence( int n)
{ Vector<Integer> temp = new Vector<Integer>();
temp.add( 1 );
temp.add(- 1 );
// Base Case
if (n == 1 )
return temp;
// Recursive Call for n-1
Vector<Integer> arr = find_sequence(n - 1 );
Vector<Integer> ans = new Vector<Integer>(n);
ans.add(arr.get( 0 ) + 1 );
ans.add(n - 1 );
// Check if n is divisible by 2
if (n % 2 == 0 )
{
Vector<Integer> div_by_2 = find_sequence(n / 2 );
if (div_by_2.get( 0 ) < ans.get( 0 ))
{
ans.clear();
ans.add(div_by_2.get( 0 ) + 1 );
ans.add(n / 2 );
}
}
// Check if n is divisible by 3
if (n % 3 == 0 )
{
Vector<Integer> div_by_3 = find_sequence(n / 3 );
if (div_by_3.get( 0 ) < ans.get( 0 ))
{
ans.clear();
ans.add(div_by_3.get( 0 ) + 1 );
ans.add(n / 3 );
}
}
// Returns a tuple (a, b), where
// a: Minimum steps to obtain x from 1
// b: Previous number
return ans;
} // Function that find the optimal // solution static Vector<Integer> find_solution( int n)
{ Vector<Integer> a = find_sequence(n);
// Print the length
System.out.println(a.get( 0 ));
Vector<Integer> sequence = new Vector<Integer>();
sequence.add(n);
// Exit condition for loop = -1
// when n has reached 1
while (a.get( 1 ) != - 1 )
{
sequence.add(a.get( 1 ));
Vector<Integer> arr = find_sequence(a.get( 1 ));
a.set( 1 , arr.get( 1 ));
}
// Return the sequence
// in reverse order
Collections.reverse(sequence);
return sequence;
} // Driver Code public static void main(String args[])
{ // Given N
int n = 5 ;
// Function call
Vector<Integer> res = find_solution(n);
for ( int i = 0 ; i < res.size(); i++)
{
System.out.print(res.get(i) + " " );
}
} } // This code is contributed by Surendra_Gangwar |
# Python3 program to implement # the above approach def find_sequence(n):
# Base Case
if n = = 1 :
return 1 , - 1
# Recursive Call for n-1
ans = (find_sequence(n - 1 )[ 0 ] + 1 , n - 1 )
# Check if n is divisible by 2
if n % 2 = = 0 :
div_by_2 = find_sequence(n / / 2 )
if div_by_2[ 0 ] < ans[ 0 ]:
ans = (div_by_2[ 0 ] + 1 , n / / 2 )
# Check if n is divisible by 3
if n % 3 = = 0 :
div_by_3 = find_sequence(n / / 3 )
if div_by_3[ 0 ] < ans[ 0 ]:
ans = (div_by_3[ 0 ] + 1 , n / / 3 )
# Returns a tuple (a, b), where
# a: Minimum steps to obtain x from 1
# b: Previous number
return ans
# Function that find the optimal # solution def find_solution(n):
a, b = find_sequence(n)
# Print the length
print (a)
sequence = []
sequence.append(n)
# Exit condition for loop = -1
# when n has reached 1
while b ! = - 1 :
sequence.append(b)
_, b = find_sequence(b)
# Return the sequence
# in reverse order
return sequence[:: - 1 ]
# Driver Code # Given N n = 5
# Function Call print ( * find_solution(n))
|
// C# program to implement // the above approach using System;
using System.Collections.Generic;
class GFG{
static List< int > find_sequence( int n)
{ List< int > temp = new List< int >();
temp.Add(1);
temp.Add(-1);
// Base Case
if (n == 1)
return temp;
// Recursive Call for n-1
List< int > arr = find_sequence(n - 1);
List< int > ans = new List< int >(n);
ans.Add(arr[0] + 1);
ans.Add(n - 1);
// Check if n is divisible by 2
if (n % 2 == 0)
{
List< int > div_by_2 =
find_sequence(n / 2);
if (div_by_2[0] < ans[0])
{
ans.Clear();
ans.Add(div_by_2[0] + 1);
ans.Add(n / 2);
}
}
// Check if n is divisible
// by 3
if (n % 3 == 0)
{
List< int > div_by_3 =
find_sequence(n / 3);
if (div_by_3[0] < ans[0])
{
ans.Clear();
ans.Add(div_by_3[0] + 1);
ans.Add(n / 3);
}
}
// Returns a tuple (a, b), where
// a: Minimum steps to obtain x
// from 1 b: Previous number
return ans;
} // Function that find the optimal // solution static List< int > find_solution( int n)
{ List< int > a = find_sequence(n);
// Print the length
Console.WriteLine(a[0]);
List< int > sequence =
new List< int >();
sequence.Add(n);
// Exit condition for loop = -1
// when n has reached 1
while (a[1] != -1)
{
sequence.Add(a[1]);
List< int > arr =
find_sequence(a[1]);
a.Insert(1, arr[1]);
}
// Return the sequence
// in reverse order
sequence.Reverse();
return sequence;
} // Driver Code public static void Main(String []args)
{ // Given N
int n = 5;
// Function call
List< int > res = find_solution(n);
for ( int i = 0; i < res.Count; i++)
{
Console.Write(res[i] + " " );
}
} } // This code is contributed by shikhasingrajput |
4 1 2 4 5
Time Complexity: T(N) = T(N-1) + T(N/2) + T(N/3), where N is given integer. This algorithm results in an exponential time complexity.
Auxiliary Space: O(1)
Recursion With Memoization Approach: The above approach can be optimized by memoizating the overlapping subproblems.
Below is the implementation of the above approach:
# Python3 program to implement # the above approach # Function to find the sequence # with given operations def find_sequence(n, map ):
# Base Case
if n = = 1 :
return 1 , - 1
# Check if the subproblem
# is already computed or not
if n in map :
return map [n]
# Recursive Call for n-1
ans = (find_sequence(n - 1 , map )[ 0 ]\
+ 1 , n - 1 )
# Check if n is divisible by 2
if n % 2 = = 0 :
div_by_2 = find_sequence(n / / 2 , map )
if div_by_2[ 0 ] < ans[ 0 ]:
ans = (div_by_2[ 0 ] + 1 , n / / 2 )
# Check if n is divisible by 3
if n % 3 = = 0 :
div_by_3 = find_sequence(n / / 3 , map )
if div_by_3[ 0 ] < ans[ 0 ]:
ans = (div_by_3[ 0 ] + 1 , n / / 3 )
# Memoize
map [n] = ans
# Returns a tuple (a, b), where
# a: Minimum steps to obtain x from 1
# b: Previous state
return ans
# Function to check if a sequence can # be obtained with given operations def find_solution(n):
# Stores the computed
# subproblems
map = {}
a, b = find_sequence(n, map )
# Return a sequence in
# reverse order
print (a)
sequence = []
sequence.append(n)
# If n has reached 1
while b ! = - 1 :
sequence.append(b)
_, b = find_sequence(b, map )
# Return sequence in reverse order
return sequence[:: - 1 ]
# Driver Code # Given N n = 5
# Function Call print ( * find_solution(n))
|
4 1 2 4 5
Time Complexity: O(N)
Auxiliary Space: O(N)
Iterative Dynamic Programming Approach: The above approach can be further optimized by using an iterative DP approach. Follow the steps below to solve the problem:
- Create an array dp[] to store the minimum length of sequence that is required to compute 1 to N by the three available operations.
- Once the dp[] array is computed, obtain the sequence by traversing the dp[] array from N to 1.
Below is the implementation of the above approach:
// C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std;
// Function to generate // the minimum sequence void find_sequence( int n)
{ // Stores the values for the
// minimum length of sequences
int dp[n + 1];
memset (dp, 0, sizeof (dp));
// Base Case
dp[1] = 1;
// Loop to build up the dp[]
// array from 1 to n
for ( int i = 1; i < n + 1; i++)
{
if (dp[i] != 0)
{
// If i + 1 is within limits
if (i + 1 < n + 1 &&
(dp[i + 1] == 0 ||
dp[i + 1] > dp[i] + 1))
{
// Update the state of i + 1
// in dp[] array to minimum
dp[i + 1] = dp[i] + 1;
}
// If i * 2 is within limits
if (i * 2 < n + 1 &&
(dp[i * 2] == 0 ||
dp[i * 2] > dp[i] + 1))
{
// Update the state of i * 2
// in dp[] array to minimum
dp[i * 2] = dp[i] + 1;
}
// If i * 3 is within limits
if (i * 3 < n + 1 &&
(dp[i * 3] == 0 ||
dp[i * 3] > dp[i] + 1))
{
// Update the state of i * 3
// in dp[] array to minimum
dp[i * 3] = dp[i] + 1;
}
}
}
// Generate the sequence by
// traversing the array
vector< int > sequence;
while (n >= 1)
{
// Append n to the sequence
sequence.push_back(n);
// If the value of n in dp
// is obtained from n - 1:
if (dp[n - 1] == dp[n] - 1)
{
n--;
}
// If the value of n in dp[]
// is obtained from n / 2:
else if (n % 2 == 0 &&
dp[( int ) floor (n / 2)] == dp[n] - 1)
{
n = ( int ) floor (n / 2);
}
// If the value of n in dp[]
// is obtained from n / 3:
else if (n % 3 == 0 &&
dp[( int ) floor (n / 3)] == dp[n] - 1)
{
n = ( int ) floor (n / 3);
}
}
// Print the sequence
// in reverse order
reverse(sequence.begin(), sequence.end());
// Print the length of
// the minimal sequence
cout << sequence.size() << endl;
for ( int i = 0; i < sequence.size(); i++)
{
cout << sequence[i] << " " ;
}
} // Driver code int main()
{ // Given Number N
int n = 5;
// Function Call
find_sequence(n);
return 0;
} // This code is contributed by divyeshrabadiya07 |
// Java program to implement // the above approach import java.io.*;
import java.util.*;
class GFG{
// Function to generate // the minimum sequence public static void find_sequence( int n)
{ // Stores the values for the
// minimum length of sequences
int [] dp = new int [n + 1 ];
Arrays.fill(dp, 0 );
// Base Case
dp[ 1 ] = 1 ;
// Loop to build up the dp[]
// array from 1 to n
for ( int i = 1 ; i < n + 1 ; i++)
{
if (dp[i] != 0 )
{
// If i + 1 is within limits
if (i + 1 < n + 1 &&
(dp[i + 1 ] == 0 ||
dp[i + 1 ] > dp[i] + 1 ))
{
// Update the state of i + 1
// in dp[] array to minimum
dp[i + 1 ] = dp[i] + 1 ;
}
// If i * 2 is within limits
if (i * 2 < n + 1 &&
(dp[i * 2 ] == 0 ||
dp[i * 2 ] > dp[i] + 1 ))
{
// Update the state of i * 2
// in dp[] array to minimum
dp[i * 2 ] = dp[i] + 1 ;
}
// If i * 3 is within limits
if (i * 3 < n + 1 &&
(dp[i * 3 ] == 0 ||
dp[i * 3 ] > dp[i] + 1 ))
{
// Update the state of i * 3
// in dp[] array to minimum
dp[i * 3 ] = dp[i] + 1 ;
}
}
}
// Generate the sequence by
// traversing the array
List<Integer> sequence = new ArrayList<Integer>();
while (n >= 1 )
{
// Append n to the sequence
sequence.add(n);
// If the value of n in dp
// is obtained from n - 1:
if (dp[n - 1 ] == dp[n] - 1 )
{
n--;
}
// If the value of n in dp[]
// is obtained from n / 2:
else if (n % 2 == 0 &&
dp[( int )Math.floor(n / 2 )] == dp[n] - 1 )
{
n = ( int )Math.floor(n / 2 );
}
// If the value of n in dp[]
// is obtained from n / 3:
else if (n % 3 == 0 &&
dp[( int )Math.floor(n / 3 )] == dp[n] - 1 )
{
n = ( int )Math.floor(n / 3 );
}
}
// Print the sequence
// in reverse order
Collections.reverse(sequence);
// Print the length of
// the minimal sequence
System.out.println(sequence.size());
for ( int i = 0 ; i < sequence.size(); i++)
{
System.out.print(sequence.get(i) + " " );
}
} // Driver Code public static void main (String[] args)
{ // Given Number N
int n = 5 ;
// Function Call
find_sequence(n);
} } // This code is contributed by avanitrachhadiya2155 |
# Python3 program to implement # the above approach # Function to generate # the minimum sequence def find_sequence(n):
# Stores the values for the
# minimum length of sequences
dp = [ 0 for _ in range (n + 1 )]
# Base Case
dp[ 1 ] = 1
# Loop to build up the dp[]
# array from 1 to n
for i in range ( 1 , n + 1 ):
if dp[i] ! = 0 :
# If i + 1 is within limits
if i + 1 < n + 1 and (dp[i + 1 ] = = 0 \
or dp[i + 1 ] > dp[i] + 1 ):
# Update the state of i + 1
# in dp[] array to minimum
dp[i + 1 ] = dp[i] + 1
# If i * 2 is within limits
if i * 2 < n + 1 and (dp[i * 2 ] = = 0 \
or dp[i * 2 ] > dp[i] + 1 ):
# Update the state of i * 2
# in dp[] array to minimum
dp[i * 2 ] = dp[i] + 1
# If i * 3 is within limits
if i * 3 < n + 1 and (dp[i * 3 ] = = 0 \
or dp[i * 3 ] > dp[i] + 1 ):
# Update the state of i * 3
# in dp[] array to minimum
dp[i * 3 ] = dp[i] + 1
# Generate the sequence by
# traversing the array
sequence = []
while n > = 1 :
# Append n to the sequence
sequence.append(n)
# If the value of n in dp
# is obtained from n - 1:
if dp[n - 1 ] = = dp[n] - 1 :
n = n - 1
# If the value of n in dp[]
# is obtained from n / 2:
elif n % 2 = = 0 \
and dp[n / / 2 ] = = dp[n] - 1 :
n = n / / 2
# If the value of n in dp[]
# is obtained from n / 3:
elif n % 3 = = 0 \
and dp[n / / 3 ] = = dp[n] - 1 :
n = n / / 3
# Return the sequence
# in reverse order
return sequence[:: - 1 ]
# Driver Code # Given Number N n = 5
# Function Call sequence = find_sequence(n)
# Print the length of # the minimal sequence print ( len (sequence))
# Print the sequence print ( * sequence)
|
// C# program to implement // the above approach using System;
using System.Collections.Generic;
class GFG
{ // Function to generate
// the minimum sequence
public static void find_sequence( int n)
{
// Stores the values for the
// minimum length of sequences
int [] dp = new int [n + 1];
Array.Fill(dp, 0);
// Base Case
dp[1] = 1;
// Loop to build up the dp[]
// array from 1 to n
for ( int i = 1; i < n + 1; i++)
{
if (dp[i] != 0)
{
// If i + 1 is within limits
if (i + 1 < n + 1 &&
(dp[i + 1] == 0 ||
dp[i + 1] > dp[i] + 1))
{
// Update the state of i + 1
// in dp[] array to minimum
dp[i + 1] = dp[i] + 1;
}
// If i * 2 is within limits
if (i * 2 < n + 1 &&
(dp[i * 2] == 0 ||
dp[i * 2] > dp[i] + 1))
{
// Update the state of i * 2
// in dp[] array to minimum
dp[i * 2] = dp[i] + 1;
}
// If i * 3 is within limits
if (i * 3 < n + 1 &&
(dp[i * 3] == 0 ||
dp[i * 3] > dp[i] + 1))
{
// Update the state of i * 3
// in dp[] array to minimum
dp[i * 3] = dp[i] + 1;
}
}
}
// Generate the sequence by
// traversing the array
List< int > sequence = new List< int >();
while (n >= 1)
{
// Append n to the sequence
sequence.Add(n);
// If the value of n in dp
// is obtained from n - 1:
if (dp[n - 1] == dp[n] - 1)
{
n--;
}
// If the value of n in dp[]
// is obtained from n / 2:
else if (n % 2 == 0 &&
dp[( int )Math.Floor(( decimal )n / 2)] ==
dp[n] - 1)
{
n = ( int )Math.Floor(( decimal )n / 2);
}
// If the value of n in dp[]
// is obtained from n / 3:
else if (n % 3 == 0 &&
dp[( int )Math.Floor(( decimal )n / 3)] ==
dp[n] - 1)
{
n = ( int )Math.Floor(( decimal )n / 3);
}
}
// Print the sequence
// in reverse order
sequence.Reverse();
// Print the length of
// the minimal sequence
Console.WriteLine(sequence.Count);
for ( int i = 0; i < sequence.Count; i++)
{
Console.Write(sequence[i] + " " );
}
}
// Driver Code
static public void Main ()
{
// Given Number N
int n = 5;
// Function Call
find_sequence(n);
}
} // This code is contributed by rag2127 |
4 1 3 4 5
Time Complexity: O(N)
Auxiliary Space: O(N)
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.