Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Minimum steps to get 1 at the center of a binary matrix

  • Last Updated : 07 Jun, 2021

Given an N * N matrix where N is odd with all 0 values except for a single cell which has the value 1. The task is to find the minimum possible moves to get this 1 to the center of the matrix when in a single move, any two consecutive rows or two consecutive columns can be swapped.
Examples: 
 

Input: mat[][] = { 
{0, 0, 1, 0, 0}, 
{0, 0, 0, 0, 0}, 
{0, 0, 0, 0, 0}, 
{0, 0, 0, 0, 0}, 
{0, 0, 0, 0, 0}} 
Output:
Operation 1: Swap the first and the second row. 
Operation 2: Swap the second and the third row.
Input: mat[][] = { 
{0, 0, 0}, 
{0, 1, 0}, 
{0, 0, 0}} 
Output:
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

 



Approach: 
 

  • Calculate the position of the center of the matrix as (cI, cJ) = (⌊N / 2⌋, ⌊N / 2⌋).
  • Find the position of the 1 in the matrix and store it in (oneI, oneJ).
  • Now, the minimum possible moves will be abs(cI – oneI) + abs(cJ – oneJ).

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
const int N = 5;
 
// Function to return the
// minimum moves required
int minMoves(int mat[N][N])
{
 
    // Center of the matrix
    int cI = N / 2, cJ = N / 2;
 
    // Find the position of the 1
    int oneI = 0, oneJ = 0;
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++) {
            if (mat[i][j] == 1) {
                oneI = i;
                oneJ = j;
                break;
            }
        }
    }
 
    return (abs(cI - oneI) + abs(cJ - oneJ));
}
 
// Driver code
int main()
{
    int mat[N][N] = { { 0, 0, 0, 0, 0 },
                      { 0, 0, 0, 0, 0 },
                      { 0, 0, 0, 0, 0 },
                      { 0, 0, 0, 0, 0 },
                      { 0, 0, 1, 0, 0 } };
 
    cout << minMoves(mat);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
 
static int N = 5;
 
// Function to return the
// minimum moves required
static int minMoves(int mat[][])
{
 
    // Center of the matrix
    int cI = N / 2, cJ = N / 2;
 
    // Find the position of the 1
    int oneI = 0, oneJ = 0;
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            if (mat[i][j] == 1)
            {
                oneI = i;
                oneJ = j;
                break;
            }
        }
    }
 
    return (Math.abs(cI - oneI) + Math.abs(cJ - oneJ));
}
 
// Driver code
public static void main(String[] args)
{
    int mat[][] = { { 0, 0, 0, 0, 0 },
                    { 0, 0, 0, 0, 0 },
                    { 0, 0, 0, 0, 0 },
                    { 0, 0, 0, 0, 0 },
                    { 0, 0, 1, 0, 0 } };
 
    System.out.print(minMoves(mat));
}
}
 
// This code is contributed by PrinciRaj1992

Python3




# Python3 implementation of the approach
N = 5
 
# Function to return the
# minimum moves required
def minMoves(mat):
 
    # Center of the matrix
    cI = N // 2
    cJ = N // 2
 
    # Find the position of the 1
    oneI = 0
    oneJ = 0
    for i in range(N):
        for j in range(N):
            if (mat[i][j] == 1):
                oneI = i
                oneJ = j
                break
 
    return (abs(cI - oneI) + abs(cJ - oneJ))
 
# Driver code
mat = [[0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0],
       [0, 0, 1, 0, 0]]
 
print(minMoves(mat))
 
# This code is contributed by Mohit Kumar

C#




// C# implementation of the approach
using System;
 
class GFG
{
static int N = 5;
 
// Function to return the
// minimum moves required
static int minMoves(int [,]mat)
{
 
    // Center of the matrix
    int cI = N / 2, cJ = N / 2;
 
    // Find the position of the 1
    int oneI = 0, oneJ = 0;
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            if (mat[i, j] == 1)
            {
                oneI = i;
                oneJ = j;
                break;
            }
        }
    }
    return (Math.Abs(cI - oneI) +
            Math.Abs(cJ - oneJ));
}
 
// Driver code
public static void Main(String[] args)
{
    int [,]mat = {{ 0, 0, 0, 0, 0 },
                  { 0, 0, 0, 0, 0 },
                  { 0, 0, 0, 0, 0 },
                  { 0, 0, 0, 0, 0 },
                  { 0, 0, 1, 0, 0 }};
 
    Console.Write(minMoves(mat));
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
 
// JavaScript implementation of the approach
 
const N = 5;
 
// Function to return the
// minimum moves required
function minMoves(mat)
{
 
    // Center of the matrix
    let cI = parseInt(N / 2), cJ = parseInt(N / 2);
 
    // Find the position of the 1
    let oneI = 0, oneJ = 0;
    for (let i = 0; i < N; i++) {
        for (let j = 0; j < N; j++) {
            if (mat[i][j] == 1) {
                oneI = i;
                oneJ = j;
                break;
            }
        }
    }
 
    return (Math.abs(cI - oneI) + Math.abs(cJ - oneJ));
}
 
// Driver code
    let mat = [ [ 0, 0, 0, 0, 0 ],
                      [ 0, 0, 0, 0, 0 ],
                      [ 0, 0, 0, 0, 0 ],
                      [ 0, 0, 0, 0, 0 ],
                      [ 0, 0, 1, 0, 0 ] ];
 
    document.write(minMoves(mat));
 
</script>
Output: 
2

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :