Consider circular track with n points marked as 1, 2, …n. A person is initially placed on point k. The person moves m > 0, slot forward (in circular way) in each step. Find the minimum number of steps required so that the person reaches initial point k.
Examples:
Input : n = 9, k = 2, m = 6
Output : 3
Explanation : Sequence of moves is
2 => 8 => 5 => 2
Input : n = 6, k = 3, m = 2
Output : 3
Naive Approach : Initialize a counter ‘i’ with ‘k’ and ‘count’ = 0. Further for each iteration increment ‘count’ add ‘m’ to ‘i’. Take its modulus with n i.e. i=((i+m)%n), if i > n. If i becomes equal to k then count will be our answer.
Time complexity: O(n).
Efficient Approach: We find GCD(n, m) and then divide n by GCD(n, m). That will be our answer. This can be explained as:
Think of n and m as per question now as we know that gcd(n, m) must divide n and the quotient tells us that after how many successive jumps(addition) of m numbers from starting position(say 0) we again reach the starting position.
Note: In circular arrangement of n numbers nth and 0th position are same.
C++
#include<bits / stdc++.h>
using namespace std;
int minStroke( int n, int m)
{
return (n/__gcd(n, m));
}
int main()
{
int n = 12, k = 5, m = 8;
cout << minStroke(n, m);
return 0;
}
|
Java
class Test
{
static int minStroke( int n, int m)
{
return (n/gcd(n, m));
}
static int gcd( int n, int m) {
if (n == 0 || m == 0 )
return 0 ;
if (n == m)
return n;
if (n > m)
return gcd(n-m, m);
return gcd(n, m-n);
}
public static void main(String args[])
{
int n = 12 , k = 5 , m = 8 ;
System.out.println(minStroke(n, m));
}
}
|
Python3
def minStroke(n, m):
return (n / __gcd(n, m))
def __gcd(n, m):
if (n = = 0 or m = = 0 ):
return 0
if (n = = m):
return n
if (n > m):
return __gcd(n - m, m)
return __gcd(n, m - n)
n = 12
k = 5
m = 8
print (minStroke(n, m))
|
C#
using System;
using System.Collections;
class GFG
{
static int minStroke( int n, int m)
{
return (n/gcd(n, m));
}
static int gcd( int n, int m) {
if (n == 0 || m == 0)
return 0;
if (n == m)
return n;
if (n > m)
return gcd(n-m, m);
return gcd(n, m-n);
}
public static void Main()
{
int n = 12, m = 8;
Console.WriteLine(minStroke(n, m));
}
}
|
PHP
<?php
function __gcd( $a , $b )
{
if ( $a == 0 || $b == 0)
return 0 ;
if ( $a == $b )
return $a ;
if ( $a > $b )
return __gcd( $a - $b , $b );
return __gcd( $a , $b - $a );
}
function minStroke( $n , $m )
{
return ( $n / __gcd( $n , $m ));
}
$n = 12; $k = 5; $m = 8;
echo minStroke( $n , $m );
?>
|
Javascript
<script>
function minStroke(n, m)
{
return (n/gcd(n, m));
}
function gcd(n, m) {
if (n == 0 || m == 0)
return 0;
if (n == m)
return n;
if (n > m)
return gcd(n-m, m);
return gcd(n, m-n);
}
let n = 12, k = 5, m = 8;
document.write(minStroke(n, m));
</script>
|
Output:
3
Time Complexity: O(log(n))
This article is contributed by Shivam Pradhan (anuj_charm). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.