Related Articles

# Minimum steps required to reach the end of a matrix | Set 2

• Difficulty Level : Hard
• Last Updated : 13 May, 2021

Given a 2d-matrix mat[][] consisting of positive integers, the task is to find the minimum number of steps required to reach the end of the matrix. If we are at cell (i, j) we can go to cells (i, j + arr[i][j]) or (i + arr[i][j], j). We cannot go out of bounds. If no path exists then print -1.

Examples:

Input: mat[][] = {
{2, 1, 2},
{1, 1, 1},
{1, 1, 1}}
Output:
The path will be {0, 0} -> {0, 2} -> {2, 2}
Thus, we are reaching there in two steps.
Input: mat[][] = {
{1, 1, 1},
{1, 1, 1},
{1, 1, 1}}
Output: 4

Approach: We have already discussed a dynamic programming-based approach for this problem in this article. This problem can also be solved using breadth first search (BFS).
The algorithm is as follows:

• Push (0, 0) in a queue.
• Traverse (0, 0) i.e. push all the cells it can visit in the queue.
• Repeat the above steps, i.e. traverse all the elements in the queue individually again if they have not been visited/traversed before.
• Repeat till we don’t reach the cell (N-1, N-1).
• The depth of this traversal will give the minimum steps required to reach the end.

Remember to mark a cell visited after it has been traversed. For this, we will use a 2D boolean array.

Why BFS works?

• This whole scenario can be considered equivalent to a directed-graph where each cell is connected to at-most two more cells({i, j+arr[i][j]} and {i+arr[i][j], j}).
• The graph is un-weighted. BFS can find the shortest path in such scenarios.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``#define n 3``using` `namespace` `std;` `// Function to return the minimum steps``// required to reach the end of the matrix``int` `minSteps(``int` `arr[][n])``{``    ``// Array to determine whether``    ``// a cell has been visited before``    ``bool` `v[n][n] = { 0 };` `    ``// Queue for bfs``    ``queue > q;` `    ``// Initializing queue``    ``q.push({ 0, 0 });` `    ``// To store the depth of search``    ``int` `depth = 0;` `    ``// BFS algorithm``    ``while` `(q.size() != 0) {` `        ``// Current queue size``        ``int` `x = q.size();``        ``while` `(x--) {` `            ``// Top-most element of queue``            ``pair<``int``, ``int``> y = q.front();` `            ``// To store index of cell``            ``// for simplicity``            ``int` `i = y.first, j = y.second;``            ``q.pop();` `            ``// Base case``            ``if` `(v[i][j])``                ``continue``;` `            ``// If we reach (n-1, n-1)``            ``if` `(i == n - 1 && j == n - 1)``                ``return` `depth;` `            ``// Marking the cell visited``            ``v[i][j] = 1;` `            ``// Pushing the adjacent cells in the``            ``// queue that can be visited``            ``// from the current cell``            ``if` `(i + arr[i][j] < n)``                ``q.push({ i + arr[i][j], j });``            ``if` `(j + arr[i][j] < n)``                ``q.push({ i, j + arr[i][j] });``        ``}``        ``depth++;``    ``}` `    ``return` `-1;``}` `// Driver code``int` `main()``{``    ``int` `arr[n][n] = { { 1, 1, 1 },``                      ``{ 1, 1, 1 },``                      ``{ 1, 1, 1 } };` `    ``cout << minSteps(arr);` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``import` `java.util.*;` `class` `GFG``{``    ` `static` `int` `n= ``3` `;``static` `class` `Pair``{``    ``int` `first , second;``    ``Pair(``int` `a, ``int` `b)``    ``{``        ``first = a;``        ``second = b;``    ``}``}` `// Function to return the minimum steps``// required to reach the end of the matrix``static` `int` `minSteps(``int` `arr[][])``{``    ``// Array to determine whether``    ``// a cell has been visited before``    ``boolean` `v[][] = ``new` `boolean``[n][n];` `    ``// Queue for bfs``    ``Queue q = ``new` `LinkedList();` `    ``// Initializing queue``    ``q.add(``new` `Pair( ``0``, ``0` `));` `    ``// To store the depth of search``    ``int` `depth = ``0``;` `    ``// BFS algorithm``    ``while` `(q.size() != ``0``)``    ``{` `        ``// Current queue size``        ``int` `x = q.size();``        ``while` `(x-->``0``)``        ``{` `            ``// Top-most element of queue``            ``Pair y = q.peek();` `            ``// To store index of cell``            ``// for simplicity``            ``int` `i = y.first, j = y.second;``            ``q.remove();` `            ``// Base case``            ``if` `(v[i][j])``                ``continue``;` `            ``// If we reach (n-1, n-1)``            ``if` `(i == n - ``1` `&& j == n - ``1``)``                ``return` `depth;` `            ``// Marking the cell visited``            ``v[i][j] = ``true``;` `            ``// Pushing the adjacent cells in the``            ``// queue that can be visited``            ``// from the current cell``            ``if` `(i + arr[i][j] < n)``                ``q.add(``new` `Pair( i + arr[i][j], j ));``            ``if` `(j + arr[i][j] < n)``                ``q.add(``new` `Pair( i, j + arr[i][j] ));``        ``}``        ``depth++;``    ``}``    ``return` `-``1``;``}` `// Driver code``public` `static` `void` `main(String args[])``{``    ``int` `arr[][] = { { ``1``, ``1``, ``1` `},``                    ``{ ``1``, ``1``, ``1` `},``                    ``{ ``1``, ``1``, ``1` `} };` `    ``System.out.println(minSteps(arr));``}``}` `// This code is contributed by Arnab Kundu`

## Python3

 `# Python 3 implementation of the approach``n ``=` `3` `# Function to return the minimum steps``# required to reach the end of the matrix``def` `minSteps(arr):``    ` `    ``# Array to determine whether``    ``# a cell has been visited before``    ``v ``=` `[[``0` `for` `i ``in` `range``(n)] ``for` `j ``in` `range``(n)]` `    ``# Queue for bfs``    ``q ``=` `[[``0``,``0``]]` `    ``# To store the depth of search``    ``depth ``=` `0` `    ``# BFS algorithm``    ``while` `(``len``(q) !``=` `0``):``        ` `        ``# Current queue size``        ``x ``=` `len``(q)``        ``while` `(x > ``0``):``            ` `            ``# Top-most element of queue``            ``y ``=` `q[``0``]` `            ``# To store index of cell``            ``# for simplicity``            ``i ``=` `y[``0``]``            ``j ``=` `y[``1``]``            ``q.remove(q[``0``])` `            ``x ``-``=` `1` `            ``# Base case``            ``if` `(v[i][j]):``                ``continue` `            ``# If we reach (n-1, n-1)``            ``if` `(i ``=``=` `n ``-` `1` `and` `j ``=``=` `n ``-` `1``):``                ``return` `depth` `            ``# Marking the cell visited``            ``v[i][j] ``=` `1` `            ``# Pushing the adjacent cells in the``            ``# queue that can be visited``            ``# from the current cell``            ``if` `(i ``+` `arr[i][j] < n):``                ``q.append([i ``+` `arr[i][j], j])``            ``if` `(j ``+` `arr[i][j] < n):``                ``q.append([i, j ``+` `arr[i][j]])` `        ``depth ``+``=` `1` `    ``return` `-``1` `# Driver code``if` `__name__ ``=``=` `'__main__'``:``    ``arr ``=` `[[``1``, ``1``, ``1``],``            ``[``1``, ``1``, ``1``],``            ``[``1``, ``1``, ``1``]]` `    ``print``(minSteps(arr))` `# This code is contributed by``# Surendra_Gangwar`

## C#

 `// C# implementation of the approach``using` `System;``using` `System.Collections.Generic;` `class` `GFG``{``    ` `static` `int` `n= 3 ;``public` `class` `Pair``{``    ``public` `int` `first , second;``    ``public` `Pair(``int` `a, ``int` `b)``    ``{``        ``first = a;``        ``second = b;``    ``}``}` `// Function to return the minimum steps``// required to reach the end of the matrix``static` `int` `minSteps(``int` `[,]arr)``{``    ``// Array to determine whether``    ``// a cell has been visited before``    ``Boolean [,]v = ``new` `Boolean[n,n];` `    ``// Queue for bfs``    ``Queue q = ``new` `Queue();` `    ``// Initializing queue``    ``q.Enqueue(``new` `Pair( 0, 0 ));` `    ``// To store the depth of search``    ``int` `depth = 0;` `    ``// BFS algorithm``    ``while` `(q.Count != 0)``    ``{` `        ``// Current queue size``        ``int` `x = q.Count;``        ``while` `(x-->0)``        ``{` `            ``// Top-most element of queue``            ``Pair y = q.Peek();` `            ``// To store index of cell``            ``// for simplicity``            ``int` `i = y.first, j = y.second;``            ``q.Dequeue();` `            ``// Base case``            ``if` `(v[i,j])``                ``continue``;` `            ``// If we reach (n-1, n-1)``            ``if` `(i == n - 1 && j == n - 1)``                ``return` `depth;` `            ``// Marking the cell visited``            ``v[i,j] = ``true``;` `            ``// Pushing the adjacent cells in the``            ``// queue that can be visited``            ``// from the current cell``            ``if` `(i + arr[i,j] < n)``                ``q.Enqueue(``new` `Pair( i + arr[i,j], j ));``            ``if` `(j + arr[i,j] < n)``                ``q.Enqueue(``new` `Pair( i, j + arr[i,j] ));``        ``}``        ``depth++;``    ``}``    ``return` `-1;``}` `// Driver code``public` `static` `void` `Main()``{``    ``int` `[,]arr = { { 1, 1, 1 },``                    ``{ 1, 1, 1 },``                    ``{ 1, 1, 1 } };` `    ``Console.WriteLine(minSteps(arr));``}``}` `// This code contributed by Rajput-Ji`

## Javascript

 ``
Output:
`4`

Time Complexity: O(n2)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up