Minimum steps required to convert the matrix into lower hessenberg matrix

Given a matrix of order NxN, Find the minimum number of steps to convert given matrix into Lower Hessenberg matrix. In each step, the only operation allowed is to decrease or increase any element value by 1.

Examples:

Input: mat[][] = {
{1, 2, 8},
{1, 3, 4},
{2, 3, 4}}
Output: 8
Decrease the element a[0][2] 8 times.
Now the matrix is lower Hessenberg.

Input: mat[][] = {
{9, 2, 5, 5},
{12, 3, 4, 5},
{13, -3, 4, 2},
{-1, 10, 1, 4}}
Output: 15

Approach:



Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of above approach
#include <bits/stdc++.h>
#define N 4
using namespace std;
  
// Function to count steps in
// conversion of matrix into upper
// Hessenberg matrix
int stepsRequired(int arr[][N])
{
    int result = 0;
    for (int i = 0; i < N; i++) {
  
        for (int j = 0; j < N; j++) {
            if (j > i + 1)
                result += abs(arr[i][j]);
        }
    }
    return result;
}
  
int main()
{
    int arr[N][N] = { 1, 2, 3, 2,
                      3, 1, 0, 3,
                      3, 2, 1, 3,
                      -3, 4, 2, 1 };
  
    cout << stepsRequired(arr);
    return 1;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of above approach
import java.io.*;
  
class GFG 
{
      
static int N = 4;
  
// Function to count steps in
// conversion of matrix into upper
// Hessenberg matrix
static int stepsRequired(int arr[][])
{
    int result = 0;
    for (int i = 0; i < N; i++)
    {
  
        for (int j = 0; j < N; j++) 
        {
            if (j > i + 1)
                result += Math.abs(arr[i][j]);
        }
    }
    return result;
}
  
// Driver code
public static void main (String[] args)
{
  
    int [][]arr = { {1, 2, 3, 2},
                    {3, 1, 0, 3},
                    {3, 2, 1, 3},
                    {-3, 4, 2, 1}
                    };
  
    System.out.println (stepsRequired(arr));
}
}
  
// The code is contributed by ajit.
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of above approach
N = 4
  
# Function to count steps in
# conversion of matrix into upper
# Hessenberg matrix
def stepsRequired(arr):
    result = 0
    for i in range(N):
        for j in range(N):
            if (j > i + 1):
                result += abs(arr[i][j])
    return result
  
  
# Driver code
arr = [[1, 2, 3, 2],
        [3, 1, 0, 3],
        [3, 2, 1, 3],
        [-3, 4, 2, 1]]
  
print(stepsRequired(arr))
  
# This code is contributed by mohit kumar 29 
  
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of above approach
using System;
  
class GFG
{
  
static int N = 4;
  
// Function to count steps in
// conversion of matrix into upper
// Hessenberg matrix
static int stepsRequired(int [,]arr)
{
    int result = 0;
    for (int i = 0; i < N; i++)
    {
  
        for (int j = 0; j < N; j++) 
        {
            if (j > i + 1)
                result += Math.Abs(arr[i,j]);
        }
    }
    return result;
}
  
// Driver code
static public void Main ()
{
      
    int [,]arr = { {1, 2, 3, 2},
                    {3, 1, 0, 3},
                    {3, 2, 1, 3},
                    {-3, 4, 2, 1}
                    };
  
    Console.Write(stepsRequired(arr));
}
}
  
// The code is contributed by Tushil..
chevron_right

Output:
8

Time complexity: O(N*N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :