Minimum steps to reach end of array under constraints
Given an array containing one digit numbers only, assuming we are standing at first index, we need to reach to end of array using minimum number of steps where in one step, we can jump to neighbor indices or can jump to a position with same value.
In other words, if we are at index i, then in one step you can reach to, arr[i-1] or arr[i+1] or arr[K] such that arr[K] = arr[i] (value of arr[K] is same as arr[i])
Examples:
Input : arr[] = {5, 4, 2, 5, 0} Output : 2 Explanation : Total 2 step required. We start from 5(0), in first step jump to next 5 and in second step we move to value 0 (End of arr[]). Input : arr[] = [0, 1, 2, 3, 4, 5, 6, 7, 5, 4, 3, 6, 0, 1, 2, 3, 4, 5, 7] Output : 5 Explanation : Total 5 step required. 0(0) -> 0(12) -> 6(11) -> 6(6) -> 7(7) -> (18) (inside parenthesis indices are shown)
This problem can be solved using BFS. We can consider the given array as unweighted graph where every vertex has two edges to next and previous array elements and more edges to array elements with same values. Now for fast processing of third type of edges, we keep 10 vectors which store all indices where digits 0 to 9 are present. In above example, vector corresponding to 0 will store [0, 12], 2 indices where 0 has occurred in given array.
Another Boolean array is used, so that we don’t visit same index more than once. As we are using BFS and BFS proceeds level by level, optimal minimum steps are guaranteed.
Implementation:
C++
// C++ program to find minimum jumps to reach end // of array #include <bits/stdc++.h> using namespace std; // Method returns minimum step to reach end of array int getMinStepToReachEnd( int arr[], int N) { // visit boolean array checks whether current index // is previously visited bool visit[N]; // distance array stores distance of current // index from starting index int distance[N]; // digit vector stores indices where a // particular number resides vector< int > digit[10]; // In starting all index are unvisited memset (visit, false , sizeof (visit)); // storing indices of each number in digit vector for ( int i = 1; i < N; i++) digit[arr[i]].push_back(i); // for starting index distance will be zero distance[0] = 0; visit[0] = true ; // Creating a queue and inserting index 0. queue< int > q; q.push(0); // loop until queue in not empty while (!q.empty()) { // Get an item from queue, q. int idx = q.front(); q.pop(); // If we reached to last index break from loop if (idx == N-1) break ; // Find value of dequeued index int d = arr[idx]; // looping for all indices with value as d. for ( int i = 0; i<digit[d].size(); i++) { int nextidx = digit[d][i]; if (!visit[nextidx]) { visit[nextidx] = true ; q.push(nextidx); // update the distance of this nextidx distance[nextidx] = distance[idx] + 1; } } // clear all indices for digit d, because all // of them are processed digit[d].clear(); // checking condition for previous index if (idx-1 >= 0 && !visit[idx - 1]) { visit[idx - 1] = true ; q.push(idx - 1); distance[idx - 1] = distance[idx] + 1; } // checking condition for next index if (idx + 1 < N && !visit[idx + 1]) { visit[idx + 1] = true ; q.push(idx + 1); distance[idx + 1] = distance[idx] + 1; } } // N-1th position has the final result return distance[N - 1]; } // driver code to test above methods int main() { int arr[] = {0, 1, 2, 3, 4, 5, 6, 7, 5, 4, 3, 6, 0, 1, 2, 3, 4, 5, 7}; int N = sizeof (arr) / sizeof ( int ); cout << getMinStepToReachEnd(arr, N); return 0; } |
Java
// Java program to find minimum jumps // to reach end of array import java.util.*; class GFG { // Method returns minimum step // to reach end of array static int getMinStepToReachEnd( int arr[], int N) { // visit boolean array checks whether // current index is previously visited boolean []visit = new boolean [N]; // distance array stores distance of // current index from starting index int []distance = new int [N]; // digit vector stores indices where a // particular number resides Vector<Integer> []digit = new Vector[ 10 ]; for ( int i = 0 ; i < 10 ; i++) digit[i] = new Vector<>(); // In starting all index are unvisited for ( int i = 0 ; i < N; i++) visit[i] = false ; // storing indices of each number // in digit vector for ( int i = 1 ; i < N; i++) digit[arr[i]].add(i); // for starting index distance will be zero distance[ 0 ] = 0 ; visit[ 0 ] = true ; // Creating a queue and inserting index 0. Queue<Integer> q = new LinkedList<>(); q.add( 0 ); // loop until queue in not empty while (!q.isEmpty()) { // Get an item from queue, q. int idx = q.peek(); q.remove(); // If we reached to last // index break from loop if (idx == N - 1 ) break ; // Find value of dequeued index int d = arr[idx]; // looping for all indices with value as d. for ( int i = 0 ; i < digit[d].size(); i++) { int nextidx = digit[d].get(i); if (!visit[nextidx]) { visit[nextidx] = true ; q.add(nextidx); // update the distance of this nextidx distance[nextidx] = distance[idx] + 1 ; } } // clear all indices for digit d, // because all of them are processed digit[d].clear(); // checking condition for previous index if (idx - 1 >= 0 && !visit[idx - 1 ]) { visit[idx - 1 ] = true ; q.add(idx - 1 ); distance[idx - 1 ] = distance[idx] + 1 ; } // checking condition for next index if (idx + 1 < N && !visit[idx + 1 ]) { visit[idx + 1 ] = true ; q.add(idx + 1 ); distance[idx + 1 ] = distance[idx] + 1 ; } } // N-1th position has the final result return distance[N - 1 ]; } // Driver Code public static void main(String []args) { int arr[] = { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 5 , 4 , 3 , 6 , 0 , 1 , 2 , 3 , 4 , 5 , 7 }; int N = arr.length; System.out.println(getMinStepToReachEnd(arr, N)); } } // This code is contributed by 29AjayKumar |
Python3
# Python 3 program to find minimum jumps to reach end# of array # Method returns minimum step to reach end of array def getMinStepToReachEnd(arr,N): # visit boolean array checks whether current index # is previously visited visit = [ False for i in range (N)] # distance array stores distance of current # index from starting index distance = [ 0 for i in range (N)] # digit vector stores indices where a # particular number resides digit = [[ 0 for i in range (N)] for j in range ( 10 )] # storing indices of each number in digit vector for i in range ( 1 ,N): digit[arr[i]].append(i) # for starting index distance will be zero distance[ 0 ] = 0 visit[ 0 ] = True # Creating a queue and inserting index 0. q = [] q.append( 0 ) # loop until queue in not empty while ( len (q)> 0 ): # Get an item from queue, q. idx = q[ 0 ] q.remove(q[ 0 ]) # If we reached to last index break from loop if (idx = = N - 1 ): break # Find value of dequeued index d = arr[idx] # looping for all indices with value as d. for i in range ( len (digit[d])): nextidx = digit[d][i] if (visit[nextidx] = = False ): visit[nextidx] = True q.append(nextidx) # update the distance of this nextidx distance[nextidx] = distance[idx] + 1 # clear all indices for digit d, because all # of them are processed # checking condition for previous index if (idx - 1 > = 0 and visit[idx - 1 ] = = False ): visit[idx - 1 ] = True q.append(idx - 1 ) distance[idx - 1 ] = distance[idx] + 1 # checking condition for next index if (idx + 1 < N and visit[idx + 1 ] = = False ): visit[idx + 1 ] = True q.append(idx + 1 ) distance[idx + 1 ] = distance[idx] + 1 # N-1th position has the final result return distance[N - 1 ] # driver code to test above methods if __name__ = = '__main__' : arr = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 5 , 4 , 3 , 6 , 0 , 1 , 2 , 3 , 4 , 5 , 7 ] N = len (arr) print (getMinStepToReachEnd(arr, N)) # This code is contributed by # Surendra_Gangwar |
C#
// C# program to find minimum jumps // to reach end of array using System; using System.Collections.Generic; class GFG { // Method returns minimum step // to reach end of array static int getMinStepToReachEnd( int []arr, int N) { // visit boolean array checks whether // current index is previously visited bool []visit = new bool [N]; // distance array stores distance of // current index from starting index int []distance = new int [N]; // digit vector stores indices where a // particular number resides List< int > []digit = new List< int >[10]; for ( int i = 0; i < 10; i++) digit[i] = new List< int >(); // In starting all index are unvisited for ( int i = 0; i < N; i++) visit[i] = false ; // storing indices of each number // in digit vector for ( int i = 1; i < N; i++) digit[arr[i]].Add(i); // for starting index distance will be zero distance[0] = 0; visit[0] = true ; // Creating a queue and inserting index 0. Queue< int > q = new Queue< int >(); q.Enqueue(0); // loop until queue in not empty while (q.Count != 0) { // Get an item from queue, q. int idx = q.Peek(); q.Dequeue(); // If we reached to last // index break from loop if (idx == N - 1) break ; // Find value of dequeued index int d = arr[idx]; // looping for all indices with value as d. for ( int i = 0; i < digit[d].Count; i++) { int nextidx = digit[d][i]; if (!visit[nextidx]) { visit[nextidx] = true ; q.Enqueue(nextidx); // update the distance of this nextidx distance[nextidx] = distance[idx] + 1; } } // clear all indices for digit d, // because all of them are processed digit[d].Clear(); // checking condition for previous index if (idx - 1 >= 0 && !visit[idx - 1]) { visit[idx - 1] = true ; q.Enqueue(idx - 1); distance[idx - 1] = distance[idx] + 1; } // checking condition for next index if (idx + 1 < N && !visit[idx + 1]) { visit[idx + 1] = true ; q.Enqueue(idx + 1); distance[idx + 1] = distance[idx] + 1; } } // N-1th position has the final result return distance[N - 1]; } // Driver Code public static void Main(String []args) { int []arr = {0, 1, 2, 3, 4, 5, 6, 7, 5, 4, 3, 6, 0, 1, 2, 3, 4, 5, 7}; int N = arr.Length; Console.WriteLine(getMinStepToReachEnd(arr, N)); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // Javascript program to find minimum jumps // to reach end of array // Method returns minimum step // to reach end of array function getMinStepToReachEnd(arr,N) { // visit boolean array checks whether // current index is previously visited let visit = new Array(N); // distance array stores distance of // current index from starting index let distance = new Array(N); // digit vector stores indices where a // particular number resides let digit = new Array(10); for (let i = 0; i < 10; i++) digit[i] = []; // In starting all index are unvisited for (let i = 0; i < N; i++) visit[i] = false ; // storing indices of each number // in digit vector for (let i = 1; i < N; i++) digit[arr[i]].push(i); // for starting index distance will be zero distance[0] = 0; visit[0] = true ; // Creating a queue and inserting index 0. let q = []; q.push(0); // loop until queue in not empty while (q.length!=0) { // Get an item from queue, q. let idx = q.shift(); // If we reached to last // index break from loop if (idx == N - 1) break ; // Find value of dequeued index let d = arr[idx]; // looping for all indices with value as d. for (let i = 0; i < digit[d].length; i++) { let nextidx = digit[d][i]; if (!visit[nextidx]) { visit[nextidx] = true ; q.push(nextidx); // update the distance of this nextidx distance[nextidx] = distance[idx] + 1; } } // clear all indices for digit d, // because all of them are processed digit[d]=[]; // checking condition for previous index if (idx - 1 >= 0 && !visit[idx - 1]) { visit[idx - 1] = true ; q.push(idx - 1); distance[idx - 1] = distance[idx] + 1; } // checking condition for next index if (idx + 1 < N && !visit[idx + 1]) { visit[idx + 1] = true ; q.push(idx + 1); distance[idx + 1] = distance[idx] + 1; } } // N-1th position has the final result return distance[N - 1]; } // Driver Code let arr=[0, 1, 2, 3, 4, 5, 6, 7, 5, 4, 3, 6, 0, 1, 2, 3, 4, 5, 7]; let N = arr.length; document.write(getMinStepToReachEnd(arr, N)); // This code is contributed by rag2127 </script> |
5
Time Complexity: O(N), where N is the number of elements in the array.
Space Complexity: O(N), where N is the number of elements in the array. We are using a distance and visit array of size N and a queue of size N to store the indices of the array.
This article is contributed by Utkarsh Trivedi. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...