Skip to content
Related Articles
Open in App
Not now

Related Articles

Minimum splits required to convert a number into prime segments

Improve Article
Save Article
Like Article
  • Difficulty Level : Hard
  • Last Updated : 30 Nov, 2021
Improve Article
Save Article
Like Article

Given a number in the form of a string s, the task is to calculate and display minimum splits required such that the segments formed are Prime or print Not Possible otherwise.
Examples: 
 

Input: s = “2351” 
Output :
Explanation: Given number is already prime.
Input: s = “2352” 
Output:
Explanation: Resultant prime segments are 23,5,2
Input: s = “2375672” 
Output :
Explanation: Resultant prime segments are 2,37567,2
 

 

Approach: 
This problem is a variation of Matrix Chain Multiplication and can be solved using Dynamic programming.
Try all possible splits recursively and at each split, check whether the segments formed are prime or not. Consider a 2D array dp where dp[i][j] shows the minimum splits from index i to j and returns dp[0][n] where n is the length of the string.
Recurrence : 
 

dp[i][j] = min(1 + solve(i, k) + solve(k + 1, j)) where i <= k <= j

Actually, in the exact recurrence written above, the left and right segments both are non-prime, then 1 + INT_MAX + INT_MAX will be negative which leads to an incorrect answer. 
So, separate calculations for the left and right segments are required. If any segment is found to be non-prime, no need to proceed further. Return min(1+left+right) otherwise.
Base cases considered are : 
 

  • If the number is prime, return 0
  • If i==j and the number is prime, return 0
  • If i==j and the number is not prime, return INT_MAX

Below code is the implementation of above approach:
 

C++




#include <bits/stdc++.h>
using namespace std;
 
int dp[1000][1000] = { 0 };
 
// Checking for prime
bool isprime(long long num)
{
    if (num <= 1)
        return false;
    for (int i = 2; i * i <= num; i++) {
        if (num % i == 0) {
            return false;
        }
    }
    return true;
}
// Conversion of string to int
long long convert(string s, int i, int j)
{
    long long temp = 0;
    for (int k = i; k <= j; k++) {
        temp = temp * 10 + (s[k] - '0');
    }
    return temp;
}
// Function to get the minimum splits
int solve(string s, int i, int j)
{
    // Convert the segment to integer or long long
    long long num = convert(s, i, j);
    // Number is prime
    if (isprime(num)) {
        return 0;
    }
    // If a single digit is prime
    if (i == j && isprime(num))
        return 0;
 
    // If single digit is not prime
    if (i == j && isprime(num) == false)
        return INT_MAX;
 
    if (dp[i][j])
        return dp[i][j];
 
    int ans = INT_MAX;
    for (int k = i; k < j; k++) {
        // Recur for left segment
        int left = solve(s, i, k);
        if (left == INT_MAX) {
            continue;
        }
 
        // Recur for right segment
        int right = solve(s, k + 1, j);
        if (right == INT_MAX) {
            continue;
        }
        // Minimum from left and right segment
        ans = min(ans, 1 + left + right);
    }
    return dp[i][j] = ans;
}
int main()
{
 
    string s = "2352";
    int n = s.length();
 
    int cuts = solve(s, 0, n - 1);
    if (cuts != INT_MAX) {
        cout << cuts;
    }
    else {
        cout << "Not Possible";
    }
}

Java




import java.util.*;
 
class GFG
{
 
    static int dp[][] = new int[1000][1000];
 
    // Checking for prime
    static boolean isprime(long num){
        int i;
        if (num <= 1)
            return false;
        for (i = 2; i * i <= num; i++) {
            if (num % i == 0) {
                return false;
            }
        }
        return true;
    }
 
    // Conversion of string to int
    static long convert(String s, int i, int j)
    {
        long temp = 0;
        int k;
        for (k = i; k <= j; k++) {
            temp = temp * 10 + (s.charAt(k) - '0');
        }
        return temp;
    }
 
    // Function to get the minimum splits
    static int solve(String s, int i, int j)
    {
        int k;
 
        // Convert the segment to integer or long long
        long num = convert(s, i, j);
 
        // Number is prime
        if (isprime(num)) {
            return 0;
        }
 
        // If a single digit is prime
        if (i == j && isprime(num))
            return 0;
     
        // If single digit is not prime
        if (i == j && isprime(num) == false)
            return Integer.MAX_VALUE;
     
        if (dp[i][j] != 0)
            return dp[i][j];
     
        int ans = Integer.MAX_VALUE;
        for (k = i; k < j; k++) {
 
            // Recur for left segment
            int left = solve(s, i, k);
            if (left == Integer.MAX_VALUE) {
                continue;
            }
     
            // Recur for right segment
            int right = solve(s, k + 1, j);
            if (right == Integer.MAX_VALUE) {
                continue;
            }
 
            // Minimum from left and right segment
            ans = Math.min(ans, 1 + left + right);
        }
        return dp[i][j] = ans;
    }
     
    public static void main (String []args)
    {
     
        String s = "2352";
        int n = s.length();
     
        int cuts = solve(s, 0, n - 1);
        if (cuts != Integer.MAX_VALUE) {
            System.out.print(cuts);
        }
        else {
            System.out.print("Not Possible");
        }
    }
}
 
// This code is contributed by chitranayal

Python3




# Python3 Implementation of the above approach
import numpy as np;
import sys
 
dp = np.zeros((1000,1000)) ;
 
INT_MAX = sys.maxsize;
 
# Checking for prime
def isprime(num) :
 
    if (num <= 1) :
        return False;
    for i in range(2, int(num ** (1/2)) + 1) :
        if (num % i == 0) :
            return False;
    return True;
 
# Conversion of string to int
def convert(s, i, j) :
 
    temp = 0;
    for k in range(i, j + 1) :
        temp = temp * 10 + (ord(s[k]) - ord('0'));
 
    return temp;
 
# Function to get the minimum splits
def solve(s, i, j) :
 
    # Convert the segment to integer or long long
    num = convert(s, i, j);
    # Number is prime
    if (isprime(num)) :
        return 0;
 
    # If a single digit is prime
    if (i == j and isprime(num)) :
        return 0;
 
    # If single digit is not prime
    if (i == j and isprime(num) == False) :
        return INT_MAX;
 
    if (dp[i][j]) :
        return dp[i][j];
 
    ans = INT_MAX;
     
    for k in range(i, j) :
        # Recur for left segment
        left = solve(s, i, k);
        if (left == INT_MAX) :
            continue;
 
        # Recur for right segment
        right = solve(s, k + 1, j);
        if (right == INT_MAX) :
            continue;
     
        # Minimum from left and right segment
        ans = min(ans, 1 + left + right);
     
    dp[i][j] = ans;
     
    return ans;
 
# Driver code   
if __name__ == "__main__" :
 
    s = "2352";
    n = len(s);
 
    cuts = solve(s, 0, n - 1);
    if (cuts != INT_MAX) :
        print(cuts);
     
    else :
        print("Not Possible");
 
# This code is converted by Yash_R

C#




using System;
 
class GFG
{
  
    static int [,]dp = new int[1000,1000];
  
    // Checking for prime
    static bool isprime(long num){
        int i;
        if (num <= 1)
            return false;
        for (i = 2; i * i <= num; i++) {
            if (num % i == 0) {
                return false;
            }
        }
        return true;
    }
  
    // Conversion of string to int
    static long convert(String s, int i, int j)
    {
        long temp = 0;
        int k;
        for (k = i; k <= j; k++) {
            temp = temp * 10 + (s[k] - '0');
        }
        return temp;
    }
  
    // Function to get the minimum splits
    static int solve(String s, int i, int j)
    {
        int k;
  
        // Convert the segment to integer or long long
        long num = convert(s, i, j);
  
        // Number is prime
        if (isprime(num)) {
            return 0;
        }
  
        // If a single digit is prime
        if (i == j && isprime(num))
            return 0;
      
        // If single digit is not prime
        if (i == j && isprime(num) == false)
            return int.MaxValue;
      
        if (dp[i,j] != 0)
            return dp[i, j];
      
        int ans = int.MaxValue;
        for (k = i; k < j; k++) {
  
            // Recur for left segment
            int left = solve(s, i, k);
            if (left == int.MaxValue) {
                continue;
            }
      
            // Recur for right segment
            int right = solve(s, k + 1, j);
            if (right == int.MaxValue) {
                continue;
            }
  
            // Minimum from left and right segment
            ans = Math.Min(ans, 1 + left + right);
        }
        return dp[i,j] = ans;
    }
      
    public static void Main(String []args)
    {
      
        String s = "2352";
        int n = s.Length;
      
        int cuts = solve(s, 0, n - 1);
        if (cuts != int.MaxValue) {
            Console.Write(cuts);
        }
        else {
            Console.Write("Not Possible");
        }
    }
}
 
// This code is contributed by PrinciRaj1992

Javascript




<script>
 
let dp = new Array(1000);
 
for(let i = 0; i < 1000; i++){
    dp[i] = new Array(1000)
}
 
// Checking for prime
function isprime(num)
{
    if (num <= 1)
        return false;
    for (let i = 2; i * i <= num; i++) {
        if (num % i == 0) {
            return false;
        }
    }
    return true;
}
// Conversion of string to int
function convert(s, i, j)
{
    let temp = 0;
    for (let k = i; k <= j; k++) {
        temp = temp * 10 + (s[k] - '0');
    }
    return temp;
}
// Function to get the minimum splits
function solve(s, i, j)
{
    // Convert the segment to integer or long long
    let num = convert(s, i, j);
    // Number is prime
    if (isprime(num)) {
        return 0;
    }
    // If a single digit is prime
    if (i == j && isprime(num))
        return 0;
 
    // If single digit is not prime
    if (i == j && isprime(num) == false)
        return Number.MAX_SAFE_INTEGER;
 
    if (dp[i][j])
        return dp[i][j];
 
    let ans = Number.MAX_SAFE_INTEGER;
    for (let k = i; k < j; k++) {
        // Recur for left segment
        let left = solve(s, i, k);
        if (left == Number.MAX_SAFE_INTEGER) {
            continue;
        }
 
        // Recur for right segment
        let right = solve(s, k + 1, j);
        if (right == Number.MAX_SAFE_INTEGER) {
            continue;
        }
        // Minimum from left and right segment
        ans = Math.min(ans, 1 + left + right);
    }
    return dp[i][j] = ans;
}
 
 
 
    let s = "2352";
    let n = s.length;
 
    let cuts = solve(s, 0, n - 1);
    if (cuts != Number.MAX_SAFE_INTEGER) {
        document.write(cuts);
    }
    else {
        document.write("Not Possible");
    }
 
    // This code is contributed by _saurabh_jaiswal
 
</script>

Output: 

2

 

Time Complexity: O(n3/2)

Auxiliary Space: O(106)


My Personal Notes arrow_drop_up
Like Article
Save Article
Related Articles

Start Your Coding Journey Now!