Skip to content
Related Articles

Related Articles

Improve Article

Minimum removals required to make a given array Bitonic

  • Difficulty Level : Expert
  • Last Updated : 09 Jun, 2021
Geek Week

Given an array arr[] of size N, the task is to find the minimum number of array elements required to be removed from the array such that the given array is converted to a bitonic array.

Examples:

Input: arr[] = { 2, 1, 1, 5, 6, 2, 3, 1 } 
Output:
Explanation: 
Removing arr[0], arr[1] and arr[5] modifies arr[] to { 1, 5, 6, 3, 1 } 
Since the array elements follow an increasing order followed by a decreasing order, the required output is 3.

Input: arr[] = { 1, 3, 1 } 
Output:
Explanation: 
The given array is already a bitonic array. Therefore, the required output is 3.

Approach: The problem can be solved based on the concept of the longest increasing subsequence problem. Follow the steps below to solve the problem:



  • Initialize a variable, say left[], such that left[i] stores the length of the longest increasing subsequence up to the ith index.
  • Initialize a variable, say right[], such that right[i] stores the length of the longest decreasing subsequence over the range [i, N].
  • Traverse left[] and right[] array using variable i and find the maximum value of (left[i] + right[i] – 1) and store it in a variable, say maxLen.
  • Finally, print the value of N – maxLen.

Below is the implementation of the above approach:

C++14




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to coutnt minimum array elements
// required to be removed to make an array bitonic
void min_element_removal(int arr[], int N)
{
    // left[i]: Stores the length
    // of LIS up to i-th index
    vector<int> left(N, 1);
 
    // right[i]: Stores the length
    // of decreasing subsequence
    // over the range [i, N]
    vector<int> right(N, 1);
 
    // Calculate the length of LIS
    // up to i-th index
    for (int i = 1; i < N; i++) {
 
        // Traverse the array
        // upto i-th index
        for (int j = 0; j < i; j++) {
 
            // If arr[j] is less than arr[i]
            if (arr[j] < arr[i]) {
 
                // Update left[i]
                left[i] = max(left[i],
                              left[j] + 1);
            }
        }
    }
 
    // Calculate the length of decreasing
    // subsequence over the range [i, N]
    for (int i = N - 2; i >= 0;
         i--) {
 
        // Traverse right[] array
        for (int j = N - 1; j > i;
             j--) {
 
            // If arr[i] is greater
            // than arr[j]
            if (arr[i] > arr[j]) {
 
                // Update right[i]
                right[i] = max(right[i],
                               right[j] + 1);
            }
        }
    }
 
    // Stores length of the
    // longest bitonic array
    int maxLen = 0;
 
    // Traverse left[] and right[] array
    for (int i = 1; i < N - 1; i++) {
 
        // Update maxLen
        maxLen = max(maxLen, left[i] + right[i] - 1);
    }
 
    cout << (N - maxLen) << "\n";
}
 
// Function to print minimum removals
// required to make given array bitonic
void makeBitonic(int arr[], int N)
{
    if (N == 1) {
        cout << "0" << endl;
        return;
    }
 
    if (N == 2) {
        if (arr[0] != arr[1])
            cout << "0" << endl;
        else
            cout << "1" << endl;
 
        return;
    }
 
    min_element_removal(arr, N);
}
 
// Driver Code
int main()
{
    int arr[] = { 2, 1, 1, 5, 6, 2, 3, 1 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    makeBitonic(arr, N);
 
    return 0;
}

Java




// Java program to implement
// the above approach
class GFG {
     
    // Function to coutnt minimum array elements
    // required to be removed to make an array bitonic
    static void min_element_removal(int arr[], int N)
    {
        // left[i]: Stores the length
        // of LIS up to i-th index
        int left[] = new int[N];
         
        for(int i = 0; i < N; i++)
            left[i] = 1;
     
        // right[i]: Stores the length
        // of decreasing subsequence
        // over the range [i, N]
        int right[] = new int[N];
         
        for(int i = 0; i < N; i++)
            right[i] = 1;
             
        // Calculate the length of LIS
        // up to i-th index
        for (int i = 1; i < N; i++) {
     
            // Traverse the array
            // upto i-th index
            for (int j = 0; j < i; j++) {
     
                // If arr[j] is less than arr[i]
                if (arr[j] < arr[i]) {
     
                    // Update left[i]
                    left[i] = Math.max(left[i],
                                  left[j] + 1);
                }
            }
        }
     
        // Calculate the length of decreasing
        // subsequence over the range [i, N]
        for (int i = N - 2; i >= 0;
             i--) {
     
            // Traverse right[] array
            for (int j = N - 1; j > i;
                 j--) {
     
                // If arr[i] is greater
                // than arr[j]
                if (arr[i] > arr[j]) {
     
                    // Update right[i]
                    right[i] = Math.max(right[i],
                                   right[j] + 1);
                }
            }
        }
     
        // Stores length of the
        // longest bitonic array
        int maxLen = 0;
     
        // Traverse left[] and right[] array
        for (int i = 1; i < N - 1; i++) {
     
            // Update maxLen
            maxLen = Math.max(maxLen, left[i] + right[i] - 1);
        }
     
        System.out.println(N - maxLen);
    }
     
    // Function to print minimum removals
    // required to make given array bitonic
    static void makeBitonic(int arr[], int N)
    {
        if (N == 1) {
            System.out.println("0");
            return;
        }
     
        if (N == 2) {
            if (arr[0] != arr[1])
                System.out.println("0");
            else
                System.out.println("1");
     
            return;
        }
     
        min_element_removal(arr, N);
    }
     
    // Driver Code
    public static void main (String[] args) {
         
        int arr[] = { 2, 1, 1, 5, 6, 2, 3, 1 };
         
        int N = arr.length;
     
        makeBitonic(arr, N);
    }
}
 
// This code is contributed by AnkitRai01

Python3




# Python3 program to implement
# the above approach
 
# Function to coutnt minimum array elements
# required to be removed to make an array bitonic
def min_element_removal(arr, N):
     
    # left[i]: Stores the length
    # of LIS up to i-th index
    left = [1] * N
 
    # right[i]: Stores the length
    # of decreasing subsequence
    # over the range [i, N]
    right = [1] * (N)
 
    #Calculate the length of LIS
    #up to i-th index
    for i in range(1, N):
 
        #Traverse the array
        #upto i-th index
        for j in range(i):
 
            #If arr[j] is less than arr[i]
            if (arr[j] < arr[i]):
 
                #Update left[i]
                left[i] = max(left[i], left[j] + 1)
 
    # Calculate the length of decreasing
    # subsequence over the range [i, N]
    for i in range(N - 2, -1, -1):
 
        # Traverse right[] array
        for j in range(N - 1, i, -1):
 
            # If arr[i] is greater
            # than arr[j]
            if (arr[i] > arr[j]):
 
                # Update right[i]
                right[i] = max(right[i], right[j] + 1)
 
    # Stores length of the
    # longest bitonic array
    maxLen = 0
 
    # Traverse left[] and right[] array
    for i in range(1, N - 1):
 
        # Update maxLen
        maxLen = max(maxLen, left[i] + right[i] - 1)
 
    print((N - maxLen))
 
# Function to prminimum removals
# required to make given array bitonic
def makeBitonic(arr, N):
    if (N == 1):
        print("0")
        return
 
    if (N == 2):
        if (arr[0] != arr[1]):
            print("0")
        else:
            print("1")
 
        return
 
    min_element_removal(arr, N)
 
# Driver Code
if __name__ == '__main__':
    arr=[2, 1, 1, 5, 6, 2, 3, 1]
    N = len(arr)
 
    makeBitonic(arr, N)
 
    # This code is contributed by mohit kumar 29

C#




// C# program to implement
// the above approach
using System;
 
class GFG{
     
// Function to coutnt minimum array elements
// required to be removed to make an array bitonic
static void min_element_removal(int []arr, int N)
{
     
    // left[i]: Stores the length
    // of LIS up to i-th index
    int []left = new int[N];
     
    for(int i = 0; i < N; i++)
        left[i] = 1;
 
    // right[i]: Stores the length
    // of decreasing subsequence
    // over the range [i, N]
    int []right = new int[N];
     
    for(int i = 0; i < N; i++)
        right[i] = 1;
         
    // Calculate the length of LIS
    // up to i-th index
    for(int i = 1; i < N; i++)
    {
         
        // Traverse the array
        // upto i-th index
        for(int j = 0; j < i; j++)
        {
             
            // If arr[j] is less than arr[i]
            if (arr[j] < arr[i])
            {
                 
                // Update left[i]
                left[i] = Math.Max(left[i],
                                   left[j] + 1);
            }
        }
    }
 
    // Calculate the length of decreasing
    // subsequence over the range [i, N]
    for(int i = N - 2; i >= 0; i--)
    {
         
        // Traverse right[] array
        for(int j = N - 1; j > i; j--)
        {
             
            // If arr[i] is greater
            // than arr[j]
            if (arr[i] > arr[j])
            {
                 
                // Update right[i]
                right[i] = Math.Max(right[i],
                                    right[j] + 1);
            }
        }
    }
 
    // Stores length of the
    // longest bitonic array
    int maxLen = 0;
 
    // Traverse left[] and right[] array
    for(int i = 1; i < N - 1; i++)
    {
         
        // Update maxLen
        maxLen = Math.Max(maxLen, left[i] +
                                 right[i] - 1);
    }
    Console.WriteLine(N - maxLen);
}
 
// Function to print minimum removals
// required to make given array bitonic
static void makeBitonic(int []arr, int N)
{
    if (N == 1)
    {
        Console.WriteLine("0");
        return;
    }
 
    if (N == 2)
    {
        if (arr[0] != arr[1])
            Console.WriteLine("0");
        else
            Console.WriteLine("1");
             
        return;
    }
    min_element_removal(arr, N);
}
 
// Driver Code
public static void Main(String[] args)
{
    int []arr = { 2, 1, 1, 5, 6, 2, 3, 1 };
    int N = arr.Length;
 
    makeBitonic(arr, N);
}
}
 
// This code is contributed by AnkThon

Javascript




<script>
 
// Javascript program to implement
// the above approach
 
// Function to coutnt minimum array elements
// required to be removed to make an array bitonic
function min_element_removal(arr, N)
{
    // left[i]: Stores the length
    // of LIS up to i-th index
    var left = Array(N).fill(1);
 
    // right[i]: Stores the length
    // of decreasing subsequence
    // over the range [i, N]
    var right = Array(N).fill(1);
 
    // Calculate the length of LIS
    // up to i-th index
    for (var i = 1; i < N; i++) {
 
        // Traverse the array
        // upto i-th index
        for (var j = 0; j < i; j++) {
 
            // If arr[j] is less than arr[i]
            if (arr[j] < arr[i]) {
 
                // Update left[i]
                left[i] = Math.max(left[i],
                              left[j] + 1);
            }
        }
    }
 
    // Calculate the length of decreasing
    // subsequence over the range [i, N]
    for (var i = N - 2; i >= 0;
         i--) {
 
        // Traverse right[] array
        for (var j = N - 1; j > i;
             j--) {
 
            // If arr[i] is greater
            // than arr[j]
            if (arr[i] > arr[j]) {
 
                // Update right[i]
                right[i] = Math.max(right[i],
                               right[j] + 1);
            }
        }
    }
 
    // Stores length of the
    // longest bitonic array
    var maxLen = 0;
 
    // Traverse left[] and right[] array
    for (var i = 1; i < N - 1; i++) {
 
        // Update maxLen
        maxLen = Math.max(maxLen, left[i] + right[i] - 1);
    }
 
    document.write((N - maxLen) + "<br>");
}
 
// Function to print minimum removals
// required to make given array bitonic
function makeBitonic(arr, N)
{
    if (N == 1) {
        document.write( "0" + "<br>");
        return;
    }
 
    if (N == 2) {
        if (arr[0] != arr[1])
            document.write( "0" + "<br>");
        else
            document.write( "1" + "<br>");
 
        return;
    }
 
    min_element_removal(arr, N);
}
 
// Driver Code
var arr = [2, 1, 1, 5, 6, 2, 3, 1];
var N = arr.length;
makeBitonic(arr, N);
 
// This code is contributed by rutvik_56.
</script>
Output: 
3

 

Time Complexity: O(N2) 
Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :