Skip to content
Related Articles

Related Articles

Improve Article

Minimum possible value of max(A, B) such that LCM(A, B) = C

  • Last Updated : 18 Mar, 2021

Given an integer C, the task is to find the minimum possible value of max(A, B) such that LCM(A, B) = C.
Examples: 
 

Input: C = 6 
Output:
max(1, 6) = 6 
max(2, 3) = 3 
and min(6, 3) = 3
Input: C = 9 
Output:
 

 

Approach: An approach to solve this problem is to find all the factors of the given number using the approach discussed in this article and then find the pair (A, B) that satisfies the given conditions and take the overall minimum of the maximum of these pairs.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the LCM of a and b
int lcm(int a, int b)
{
    return (a / __gcd(a, b) * b);
}
 
// Function to return the minimized value
int getMinValue(int c)
{
    int ans = INT_MAX;
 
    // To find the factors
    for (int i = 1; i <= sqrt(c); i++) {
 
        // To check if i is a factor of c and
        // the minimum possible number
        // satisfying the given conditions
        if (c % i == 0 && lcm(i, c / i) == c) {
 
            // Update the answer
            ans = min(ans, max(i, c / i));
        }
    }
    return ans;
}
 
// Driver code
int main()
{
    int c = 6;
 
    cout << getMinValue(c);
 
    return 0;
}

Java




// Java implementation of the approach
class Solution
{
    // Recursive function to return gcd of a and b
    static int __gcd(int a, int b)
    {
        // Everything divides 0
        if (a == 0)
        return b;
        if (b == 0)
        return a;
         
        // base case
        if (a == b)
            return a;
         
        // a is greater
        if (a > b)
            return __gcd(a - b, b);
        return __gcd(a, b - a);
    }
     
    // Function to return the LCM of a and b
    static int lcm(int a, int b)
    {
        return (a / __gcd(a, b) * b);
    }
 
    // Function to return the minimized value
    static int getMinValue(int c)
    {
        int ans = Integer.MAX_VALUE;
 
        // To find the factors
        for (int i = 1; i <= Math.sqrt(c); i++)
        {
 
            // To check if i is a factor of c and
            // the minimum possible number
            // satisfying the given conditions
            if (c % i == 0 && lcm(i, c / i) == c)
            {
 
                // Update the answer
                ans = Math.min(ans, Math.max(i, c / i));
            }
        }
        return ans;
    }
 
    // Driver code
    public static void main(String args[])
    {
        int c = 6;
 
        System.out.println(getMinValue(c));
    }
}
 
// This code is contributed by Arnab Kundu

Python3




# Python implementation of the approach
import sys
 
# Recursive function to return gcd of a and b
def __gcd(a, b):
     
    # Everything divides 0
    if (a == 0):
        return b;
    if (b == 0):
        return a;
 
    # base case
    if (a == b):
        return a;
 
    # a is greater
    if (a > b):
        return __gcd(a - b, b);
    return __gcd(a, b - a);
 
# Function to return the LCM of a and b
def lcm(a, b):
    return (a / __gcd(a, b) * b);
 
# Function to return the minimized value
def getMinValue(c):
    ans = sys.maxsize;
 
    # To find the factors
    for i in range(1, int(pow(c, 1/2)) + 1):
 
        # To check if i is a factor of c and
        # the minimum possible number
        # satisfying the given conditions
        if (c % i == 0 and lcm(i, c / i) == c):
 
            # Update the answer
            ans = min(ans, max(i, c / i));
    return int(ans);
 
# Driver code
if __name__ == '__main__':
    c = 6;
 
    print(getMinValue(c));
     
# This code is contributed by 29AjayKumar

C#




// C# implementation of the approach
using System;
 
class GFG
{
    // Recursive function to return gcd of a and b
    static int __gcd(int a, int b)
    {
        // Everything divides 0
        if (a == 0)
        return b;
        if (b == 0)
        return a;
         
        // base case
        if (a == b)
            return a;
         
        // a is greater
        if (a > b)
            return __gcd(a - b, b);
        return __gcd(a, b - a);
    }
     
    // Function to return the LCM of a and b
    static int lcm(int a, int b)
    {
        return (a / __gcd(a, b) * b);
    }
 
    // Function to return the minimized value
    static int getMinValue(int c)
    {
        int ans = int.MaxValue;
 
        // To find the factors
        for (int i = 1; i <= Math.Sqrt(c); i++)
        {
 
            // To check if i is a factor of c and
            // the minimum possible number
            // satisfying the given conditions
            if (c % i == 0 && lcm(i, c / i) == c)
            {
 
                // Update the answer
                ans = Math.Min(ans, Math.Max(i, c / i));
            }
        }
        return ans;
    }
 
    // Driver code
    public static void Main()
    {
        int c = 6;
 
        Console.WriteLine(getMinValue(c));
    }
}
 
// This code is contributed by AnkitRai01

Javascript




<script>
 
// javascript implementation of the approach
 
// Recursive function to return gcd of a and b
function __gcd(a , b)
{
    // Everything divides 0
    if (a == 0)
    return b;
    if (b == 0)
    return a;
     
    // base case
    if (a == b)
        return a;
     
    // a is greater
    if (a > b)
        return __gcd(a - b, b);
    return __gcd(a, b - a);
}
 
// Function to return the LCM of a and b
function lcm(a , b)
{
    return (a / __gcd(a, b) * b);
}
 
// Function to return the minimized value
function getMinValue(c)
{
    var ans = Number.MAX_VALUE;
 
    // To find the factors
    for (i = 1; i <= Math.sqrt(c); i++)
    {
 
        // To check if i is a factor of c and
        // the minimum possible number
        // satisfying the given conditions
        if (c % i == 0 && lcm(i, c / i) == c)
        {
 
            // Update the answer
            ans = Math.min(ans, Math.max(i, c / i));
        }
    }
    return ans;
}
 
// Driver code
 
var c = 6;
 
document.write(getMinValue(c));
 
// This code contributed by shikhasingrajput
 
</script>
Output: 
3

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :