Minimum possible sum of array elements after performing the given operation
Given an array arr[] of positive integers and an integer x, the task is to minimize the sum of elements of the array after performing the given operation at most once. In a single operation, any element from the array can be divided by x (if it is divisible by x) and at the same time, any other element from the array must be multiplied by x.
Examples:
Input: arr[] = {1, 2, 3, 4, 5}, x = 2
Output: 14
Multiply 1 by x i.e. 1 * 2 = 2
Divide 4 by x i.e. 4 / 2 = 2
And the updated sum will be 2 + 2 + 3 + 2 + 5 = 14
Input: arr[] = {5, 5, 5, 5, 6}, x = 3
Output: 26
Approach: For an optimal solution, x must be multiplied with the smallest element from the array and only the largest element divisible by x must be divided by it. Let sumAfterOperation be the sum of the array elements calculated after performing the operation and sum be the sum of all the elements of the original array then the minimized sum will be min(sum, sumAfterOperation).
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; #define ll long long int // Function to return the minimized sum ll minSum( int arr[], int n, int x) { ll sum = 0; // To store the largest element // from the array which is // divisible by x int largestDivisible = -1, minimum = arr[0]; for ( int i = 0; i < n; i++) { // Sum of array elements before // performing any operation sum += arr[i]; // If current element is divisible by x // and it is maximum so far if (arr[i] % x == 0 && largestDivisible < arr[i]) largestDivisible = arr[i]; // Update the minimum element if (arr[i] < minimum) minimum = arr[i]; } // If no element can be reduced then there's no point // in performing the operation as we will end up // increasing the sum when an element is multiplied by x if (largestDivisible == -1) return sum; // Subtract the chosen elements from the sum // and then add their updated values ll sumAfterOperation = sum - minimum - largestDivisible + (x * minimum) + (largestDivisible / x); // Return the minimized sum return min(sum, sumAfterOperation); } // Driver code int main() { int arr[] = { 5, 5, 5, 5, 6 }; int n = sizeof (arr) / sizeof (arr[0]); int x = 3; cout << minSum(arr, n, x); return 0; } |
Java
// Java implementation of the approach class GFG { // Function to return the minimized sum static int minSum( int arr[], int n, int x) { int sum = 0 ; // To store the largest element // from the array which is // divisible by x int largestDivisible = - 1 , minimum = arr[ 0 ]; for ( int i = 0 ; i < n; i++) { // Sum of array elements before // performing any operation sum += arr[i]; // If current element is divisible // by x and it is maximum so far if (arr[i] % x == 0 && largestDivisible < arr[i]) largestDivisible = arr[i]; // Update the minimum element if (arr[i] < minimum) minimum = arr[i]; } // If no element can be reduced then // there's no point in performing the // operation as we will end up increasing // the sum when an element is multiplied by x if (largestDivisible == - 1 ) return sum; // Subtract the chosen elements from the // sum and then add their updated values int sumAfterOperation = sum - minimum - largestDivisible + (x * minimum) + (largestDivisible / x); // Return the minimized sum return Math.min(sum, sumAfterOperation); } // Driver code public static void main(String[] args) { int arr[] = { 5 , 5 , 5 , 5 , 6 }; int n =arr.length; int x = 3 ; System.out.println(minSum(arr, n, x)); } } // This code is contributed // by Code_Mech |
Python3
# Python3 implementation of the approach # Function to return the minimized sum def minSum(arr, n, x): Sum = 0 # To store the largest element # from the array which is # divisible by x largestDivisible, minimum = - 1 , arr[ 0 ] for i in range ( 0 , n): # Sum of array elements before # performing any operation Sum + = arr[i] # If current element is divisible by x # and it is maximum so far if (arr[i] % x = = 0 and largestDivisible < arr[i]): largestDivisible = arr[i] # Update the minimum element if arr[i] < minimum: minimum = arr[i] # If no element can be reduced then there's # no point in performing the operation as # we will end up increasing the sum when an # element is multiplied by x if largestDivisible = = - 1 : return Sum # Subtract the chosen elements from the # sum and then add their updated values sumAfterOperation = ( Sum - minimum - largestDivisible + (x * minimum) + (largestDivisible / / x)) # Return the minimized sum return min ( Sum , sumAfterOperation) # Driver code if __name__ = = "__main__" : arr = [ 5 , 5 , 5 , 5 , 6 ] n = len (arr) x = 3 print (minSum(arr, n, x)) # This code is contributed by Rituraj Jain |
C#
// C# implementation of the approach using System; class GFG { // Function to return the minimized sum static int minSum( int [] arr, int n, int x) { int sum = 0; // To store the largest element // from the array which is // divisible by x int largestDivisible = -1, minimum = arr[0]; for ( int i = 0; i < n; i++) { // Sum of array elements before // performing any operation sum += arr[i]; // If current element is divisible // by x and it is maximum so far if (arr[i] % x == 0 && largestDivisible < arr[i]) largestDivisible = arr[i]; // Update the minimum element if (arr[i] < minimum) minimum = arr[i]; } // If no element can be reduced then // there's no point in performing the // operation as we will end up increasing // the sum when an element is multiplied by x if (largestDivisible == -1) return sum; // Subtract the chosen elements from the // sum and then add their updated values int sumAfterOperation = sum - minimum - largestDivisible + (x * minimum) + (largestDivisible / x); // Return the minimized sum return Math.Min(sum, sumAfterOperation); } // Driver code public static void Main() { int [] arr = { 5, 5, 5, 5, 6 }; int n = arr.Length; int x = 3; Console.WriteLine(minSum(arr, n, x)); } } // This code is contributed // by Code_Mech |
PHP
<?php // PHP implementation of the approach // Function to return the minimized sum function minSum( $arr , $n , $x ) { $sum = 0; // To store the largest element // from the array which is // divisible by x $largestDivisible = -1; $minimum = $arr [0]; for ( $i = 0; $i < $n ; $i ++) { // Sum of array elements before // performing any operation $sum += $arr [ $i ]; // If current element is divisible // by x and it is maximum so far if ( $arr [ $i ] % $x == 0 && $largestDivisible < $arr [ $i ]) $largestDivisible = $arr [ $i ]; // Update the minimum element if ( $arr [ $i ] < $minimum ) $minimum = $arr [ $i ]; } // If no element can be reduced then // there's no point in performing the // operation as we will end up increasing // the sum when an element is multiplied by x if ( $largestDivisible == -1) return $sum ; // Subtract the chosen elements from the // sum and then add their updated values $sumAfterOperation = $sum - $minimum - $largestDivisible + ( $x * $minimum ) + ( $largestDivisible / $x ); // Return the minimized sum return min( $sum , $sumAfterOperation ); } // Driver code $arr = array ( 5, 5, 5, 5, 6 ); $n = sizeof( $arr ); $x = 3; print (minSum( $arr , $n , $x )); // This code is contributed by Ryuga ?> |
Javascript
<script> // javascript implementation of the approach // Function to return the minimized sum function minSum(arr , n , x) { var sum = 0; // To store the largest element // from the array which is // divisible by x var largestDivisible = -1, minimum = arr[0]; for (i = 0; i < n; i++) { // Sum of array elements before // performing any operation sum += arr[i]; // If current element is divisible // by x and it is maximum so far if (arr[i] % x == 0 && largestDivisible < arr[i]) largestDivisible = arr[i]; // Update the minimum element if (arr[i] < minimum) minimum = arr[i]; } // If no element can be reduced then // there's no point in performing the // operation as we will end up increasing // the sum when an element is multiplied by x if (largestDivisible == -1) return sum; // Subtract the chosen elements from the // sum and then add their updated values var sumAfterOperation = sum - minimum - largestDivisible + (x * minimum) + (largestDivisible / x); // Return the minimized sum return Math.min(sum, sumAfterOperation); } // Driver code var arr = [ 5, 5, 5, 5, 6 ]; var n = arr.length; var x = 3; document.write(minSum(arr, n, x)); // This code contributed by aashish1995 </script> |
26
Time Complexity: O(N), as we are using a loop to traverse N times so it will cost us O(N) time
Auxiliary Space: O(1), as we are not using any extra space.
Please Login to comment...