Open In App
Related Articles

Minimum operations to make counts of remainders same in an array

Improve Article
Improve
Save Article
Save
Like Article
Like

Given an array arr[] of N integers and an integer M where N % M = 0. The task is to find the minimum number of operations that need to be performed on the array to make c0 = c1 = ….. = cM – 1 = N / M where cr is the number of elements in the given array having remainder r when divided by M. In each operation, any array element can be incremented by 1.

Examples: 

Input: arr[] = {1, 2, 3}, M = 3 
Output:
After performing the modulus operation on the given array, the array becomes {0, 1, 2} 
And count of c0 = c1 = c2 = n / m = 1. 
So, no any additional operations are required.

Input: arr[] = {3, 2, 0, 6, 10, 12}, M = 3 
Output:
After performing the modulus operation on the given array, the array becomes {0, 2, 0, 0, 1, 0} 
And count of c0 = 4, c1 = 1 and c2 = 1. To make c0 = c1 = c2 = n / m = 2. 
Add 1 to 6 and 2 to 12 then the array becomes {3, 2, 0, 7, 10, 14} and c0 = c1 = c2 = n / m = 2. 

Approach: For each i from 0 to m – 1, find all the elements of the array that are congruent to i modulo m and store their indices in a list. Also, create a vector called extra, and let k = n / m.

We have to cycle from 0 to m – 1 twice. For each i from 0 to m – 1, if there are more elements than k in the list, remove the extra elements from this list and add them to extra. If instead there are lesser elements than k then remove the last few elements from the vector extra. For every removed index idx, increase arr[idx] by (i – arr[idx]) % m.

It is obvious that after the first m iterations, every list will have size at most k and after m more iterations all lists will have the same sizes i.e. k.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum
// number of operations required
int minOperations(int n, int a[], int m)
{
    int k = n / m;
 
    // To store modulos values
    vector<vector<int> > val(m);
    for (int i = 0; i < n; ++i) {
        val[a[i] % m].push_back(i);
    }
 
    long long ans = 0;
    vector<pair<int, int> > extra;
 
    for (int i = 0; i < 2 * m; ++i) {
        int cur = i % m;
 
        // If it's size greater than k
        // it needed to be decreased
        while (int(val[cur].size()) > k) {
            int elem = val[cur].back();
            val[cur].pop_back();
            extra.push_back(make_pair(elem, i));
        }
 
        // If it's size is less than k
        // it needed to be increased
        while (int(val[cur].size()) < k && !extra.empty()) {
            int elem = extra.back().first;
            int mmod = extra.back().second;
            extra.pop_back();
            val[cur].push_back(elem);
            ans += i - mmod;
        }
    }
 
    return ans;
}
 
// Driver code
int main()
{
    int m = 3;
 
    int a[] = { 3, 2, 0, 6, 10, 12 };
    int n = sizeof(a) / sizeof(a[0]);
    cout << minOperations(n, a, m);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG{
 
static class pair
{
    int first, second;
     
    public pair(int first, int second) 
    {
        this.first = first;
        this.second = second;
    }   
}
 
// Function to return the minimum
// number of operations required
static int minOperations(int n, int a[], int m)
{
    int k = n / m;
 
    // To store modulos values
    @SuppressWarnings("unchecked")
    Vector<Integer> []val = new Vector[m];
    for(int i = 0; i < val.length; i++)
        val[i] = new Vector<Integer>();
         
    for(int i = 0; i < n; ++i)
    {
        val[a[i] % m].add(i);
    }
 
    long ans = 0;
    Vector<pair> extra = new Vector<>();
 
    for(int i = 0; i < 2 * m; ++i)
    {
        int cur = i % m;
 
        // If it's size greater than k
        // it needed to be decreased
        while ((val[cur].size()) > k)
        {
            int elem = val[cur].lastElement();
            val[cur].removeElementAt(val[cur].size() - 1);
            extra.add(new pair(elem, i));
        }
 
        // If it's size is less than k
        // it needed to be increased
        while (val[cur].size() < k && !extra.isEmpty())
        {
            int elem = extra.get(extra.size() - 1).first;
            int mmod = extra.get(extra.size() - 1).second;
             
            extra.remove(extra.size() - 1);
            val[cur].add(elem);
            ans += i - mmod;
        }
    }
    return (int)ans;
}
 
// Driver code
public static void main(String[] args)
{
    int m = 3;
    int a[] = { 3, 2, 0, 6, 10, 12 };
    int n = a.length;
     
    System.out.print(minOperations(n, a, m));
}
}
 
// This code is contributed by Princi Singh


Python3




# Python3 implementation of the approach
 
# Function to return the minimum
# number of operations required
def minOperations(n, a, m):
 
    k = n // m
 
    # To store modulos values
    val = [[] for i in range(m)]
    for i in range(0, n):
        val[a[i] % m].append(i)
     
    ans = 0
    extra = []
 
    for i in range(0, 2 * m):
        cur = i % m
 
        # If it's size greater than k
        # it needed to be decreased
        while len(val[cur]) > k:
            elem = val[cur].pop()
            extra.append((elem, i))
 
        # If it's size is less than k
        # it needed to be increased
        while (len(val[cur]) < k and
               len(extra) > 0):
            elem = extra[-1][0]
            mmod = extra[-1][1]
            extra.pop()
            val[cur].append(elem)
            ans += i - mmod
 
    return ans
 
# Driver code
if __name__ == "__main__":
 
    m = 3
 
    a = [3, 2, 0, 6, 10, 12]
    n = len(a)
    print(minOperations(n, a, m))
     
# This code is contributed by Rituraj Jain


C#




// C# implementation of the
// above approach
using System;
using System.Collections.Generic;
class GFG{
 
public class pair
{
  public int first,
             second;
 
  public pair(int first,
              int second) 
  {
    this.first = first;
    this.second = second;
  }   
}
 
// Function to return the minimum
// number of operations required
static int minOperations(int n,
                         int []a,
                         int m)
{
  int k = n / m;
 
  // To store modulos values
  List<int> []val =
       new List<int>[m];
   
  for(int i = 0;
          i < val.Length; i++)
    val[i] = new List<int>();
 
  for(int i = 0; i < n; ++i)
  {
    val[a[i] % m].Add(i);
  }
 
  long ans = 0;
  List<pair> extra =
       new List<pair>();
 
  for(int i = 0;
          i < 2 * m; ++i)
  {
    int cur = i % m;
 
    // If it's size greater than k
    // it needed to be decreased
    while ((val[cur].Count) > k)
    {
      int elem = val[cur][val[cur].Count - 1];
      val[cur].RemoveAt(val[cur].Count - 1);
      extra.Add(new pair(elem, i));
    }
 
    // If it's size is less than k
    // it needed to be increased
    while (val[cur].Count < k &&
           extra.Count != 0)
    {
      int elem = extra[extra.Count - 1].first;
      int mmod = extra[extra.Count - 1].second;
      extra.RemoveAt(extra.Count - 1);
      val[cur].Add(elem);
      ans += i - mmod;
    }
  }
  return (int)ans;
}
 
// Driver code
public static void Main(String[] args)
{
  int m = 3;
  int []a = {3, 2, 0, 6, 10, 12};
  int n = a.Length;
  Console.Write(minOperations(n, a, m));
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
// JavaScript implementation of the approach
 
// Function to return the minimum
// number of operations required
function minOperations(n, a, m)
{
    let k = Math.floor(n / m)
 
    // To store modulos values
    let val = new Array(m)
    for (var i = 0; i < m; i++)
        val[i] = new Array()
    for (var i = 0; i < n; i++)
        val[a[i] % m].push(i)
     
    let ans = 0
    let extra = []
 
    for (var i = 0; i < m + m; i++)
    {
        cur = i % m
 
        // If it's size greater than k
        // it needed to be decreased
        while ((val[cur]).length > k)
        {
            let elem = val[cur].pop()
            extra.push([elem, i])
        }
 
        // If it's size is less than k
        // it needed to be increased
        while ((val[cur]).length < k &&
               (extra).length > 0)
        {
            let elem = extra[extra.length - 1][0]
            let mmod = extra[extra.length - 1][1]
            extra.pop()
            val[cur].push(elem)
            ans += i - mmod
        }
    }
 
    return ans
 
}
 
// Driver code
let m = 3
let a = [3, 2, 0, 6, 10, 12]
let n = a.length
console.log(minOperations(n, a, m))
     
// This code is contributed by phasing17
 
</script>


Output: 

3

 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 17 Aug, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials