Skip to content
Related Articles

Related Articles

Improve Article

Minimum operations required to make all the array elements equal

  • Difficulty Level : Easy
  • Last Updated : 22 Apr, 2021

Given an array arr[] of n integer and an integer k. The task is to count the minimum number of times the given operation is required to make all the array elements equal. In a single operation, the kth element of the array is appended at the end of the array and the first element of the array gets deleted (the size of the array remains same). If the array elements cannot be made equal with this operation then print -1 else print the count of minimum operations required.
Examples: 
 

Input: arr[] = {2, 1, 1, 1, 1}, k = 3 
Output:
Applying the operation 1st time 
3rd element in the array is 1 we append it to the end of the array and get arr[] = {2, 1, 1, 1, 1, 1} 
then we delete the 1st element and get arr[] = {1, 1, 1, 1, 1}
Input: arr[] = {1, 2, 3, 4}, k = 3 
Output: -1 
 

 

Approach: At each operation at first the kth element is copied to the end then the (k + 1)th element from the initial sequence is copied, then (k + 2)th and so on. So all the elements will become equal if and only if all the elements in the array starting from the kth element are equal. It’s now also obvious that the number of operations needed for it is equal to the index of the last number that is not equal to the nth element of the initial sequence
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the above approach
#include<bits/stdc++.h>
 
using namespace std;
 
    // Function to return the minimum number of
    // given operation required to make all the
    // array elements equal
    void minOperation(int n, int k, int a[])
    {
         
        // Check if all the elements
        // from kth index to last are equal
        for (int i = k; i < n; i++)
        {
            if(a[i] != a[k - 1])
                cout << (-1)<<endl;
        }
         
        // Finding the 1st element which is
        // not equal to the kth element
        for (int i = k - 2; i > -1; i--)
        {
            if(a[i] != a[k - 1])
                cout << (i + 1) << endl;
        }
    }
 
    // Driver code
    int main ()
    {
        int n = 5;
        int k = 3;
        int a[] = {2, 1, 1, 1, 1};
         
        minOperation(n, k, a);
    }
 
// This code is contributed by
// Surendra_Gangwar

Java




// Java implementation of the above approach
import java.io.*;
 
class GFG
{
         
    // Function to return the minimum number of
    // given operation required to make all the
    // array elements equal
    static void minOperation(int n, int k, int a[])
    {
         
        // Check if all the elements
        // from kth index to last are equal
        for (int i = k; i < n; i++)
        {
            if(a[i] != a[k - 1])
                System.out.println(-1);
        }
         
        // Finding the 1st element which is
        // not equal to the kth element
        for (int i = k - 2; i > -1; i--)
        {
            if(a[i] != a[k - 1])
                System.out.println(i + 1);
        }
    }
 
    // Driver code
    public static void main (String[] args)
    {
     
        int n = 5;
        int k = 3;
        int a[] = {2, 1, 1, 1, 1};
         
        minOperation(n, k, a);
    }
}
 
// This code is contributed by ajit.

Python




# Python3 implementation of the approach
 
# Function to return the minimum number of given operation
# required to make all the array elements equal
def minOperation(n, k, a):
     
    # Check if all the elements
    # from kth index to last are equal
    for i in range(k, n):
        if(a[i] != a[k - 1]):
            return -1
             
    # Finding the 1st element
    # which is not equal to the kth element
    for i in range(k-2, -1, -1):
        if(a[i] != a[k-1]):
            return i + 1
             
# Driver code
n = 5
k = 3
a = [2, 1, 1, 1, 1]
print(minOperation(n, k, a))

C#




// C# implementation of the above approach
using System;
 
class GFG
{
     
    // Function to return the minimum number of
    // given operation required to make all the
    // array elements equal
    static void minOperation(int n, int k, int []a)
    {
         
        // Check if all the elements
        // from kth index to last are equal
        for (int i = k; i < n; i++)
        {
            if(a[i] != a[k - 1])
                Console.WriteLine(-1);
             
        }
         
        // Finding the 1st element which is
        // not equal to the kth element
        for (int i = k - 2; i > -1; i--)
        {
            if(a[i] != a[k - 1])
                Console.WriteLine(i + 1);
        }
    }
 
    // Driver code
    static public void Main ()
    {
        int n = 5;
        int k = 3;
        int []a = {2, 1, 1, 1, 1};
         
        minOperation(n, k, a);
    }
}
 
// This code is contributed by Ryuga

PHP




<?php
// Php implementation of the approach
 
// Function to return the minimum number of
// given operation required to make all the
// array elements equal
function minOperation($n, $k, &$a)
{
     
    // Check if all the elements
    // from kth index to last are equal
    for ($i = $k; $i < $n; $i++)
    {
        if($a[$i] != $a[$k - 1])
            return -1;
    }
     
    // Finding the 1st element which is
    // not equal to the kth element
    for ($i = $k - 2; $i > -1; $i--)
    {
        if($a[$i] != $a[$k - 1])
            return ($i + 1);
    }
}
 
// Driver code
$n = 5;
$k = 3;
$a = array(2, 1, 1, 1, 1);
echo(minOperation($n, $k, $a));
 
// This code is contributed
// by Shivi_Aggarwal
?>

Javascript




<script>
// javascript implementation of the above approach
 
    // Function to return the minimum number of
    // given operation required to make all the
    // array elements equal
    function minOperation(n, k, a)
    {
 
        // Check if all the elements
        // from kth index to last are equal
        for (i = k; i < n; i++)
        {
            if (a[i] != a[k - 1])
                document.write(-1);
        }
 
        // Finding the 1st element which is
        // not equal to the kth element
        for (i = k - 2; i > -1; i--)
        {
            if (a[i] != a[k - 1])
                document.write(i + 1);
        }
    }
 
    // Driver code
        var n = 5;
        var k = 3;
        var a = [ 2, 1, 1, 1, 1 ];
 
        minOperation(n, k, a);
 
// This code is contributed by Rajput-Ji
</script>
Output: 
1

 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :