# Minimum operations required to set all elements of binary matrix

Given a binary matrix of N rows and M columns. The operation allowed on the matrix is to choose any index (x, y) and toggle all the elements between the rectangle having top-left as (0, 0) and bottom-right as (x-1, y-1). Toggling the element means changing 1 to 0 and 0 to 1. The task is to find minimum operations required to make set all the elements of the matrix i.e make all elements as 1.

Examples:

```Input : mat[][] =  0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
1 1 1 1 1
1 1 1 1 1
Output : 1
In one move, choose (3, 3) to make the
whole matrix consisting of only 1s.

Input : mat[][] =  0 0 1 1 1
0 0 0 1 1
0 0 0 1 1
1 1 1 1 1
1 1 1 1 1
Output : 3
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

The idea is to start from the end point (N – 1, M – 1) and traverse the matrix in reverse order. Whenever we encounter a cell which has a value of 0, flip it.
Why traversing from end point ?
Suppose there are 0 at (x, y) and (x + 1, y + 1) cell. You shouldn’t flip a cell (x + 1, y + 1) after cell (x, y) because after you flipped (x, y) to 1, in next move to flip (x + 1, y + 1) cell, you will flip again (x, y) to 0. So there is no benefit from the first move for flipping (x, y) cell.

Below is implementation of this approach:

## C++

 `// C++ program to find minimum operations required ` `// to set all the element of binary matrix ` `#include ` `#define N 5 ` `#define M 5 ` `using` `namespace` `std; ` ` `  `// Return minimum operation required to make all 1s. ` `int` `minOperation(``bool` `arr[N][M]) ` `{ ` `    ``int` `ans = 0; ` `    ``for` `(``int` `i = N - 1; i >= 0; i--) ` `    ``{ ` `        ``for` `(``int` `j = M - 1; j >= 0; j--) ` `        ``{ ` `            ``// check if this cell equals 0 ` `            ``if``(arr[i][j] == 0) ` `            ``{ ` `                ``// increase the number of moves ` `                ``ans++; ` ` `  `                ``// flip from this cell to the start point ` `                ``for` `(``int` `k = 0; k <= i; k++) ` `                ``{ ` `                    ``for` `(``int` `h = 0; h <= j; h++) ` `                    ``{ ` `                        ``// flip the cell ` `                        ``if` `(arr[k][h] == 1) ` `                            ``arr[k][h] = 0; ` `                        ``else` `                            ``arr[k][h] = 1; ` `                    ``} ` `                ``} ` `            ``} ` `        ``} ` `    ``} ` `    ``return` `ans; ` `} ` ` `  `// Driven Program ` `int` `main() ` `{ ` `    ``bool` `mat[N][M] = ` `    ``{ ` `        ``0, 0, 1, 1, 1, ` `        ``0, 0, 0, 1, 1, ` `        ``0, 0, 0, 1, 1, ` `        ``1, 1, 1, 1, 1, ` `        ``1, 1, 1, 1, 1 ` `    ``}; ` ` `  `    ``cout << minOperation(mat) << endl; ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java program to find minimum operations required  ` `// to set all the element of binary matrix  ` ` `  `class` `GFG { ` ` `  `    ``static` `final` `int` `N = ``5``; ` `    ``static` `final` `int` `M = ``5``; ` ` `  `// Return minimum operation required to make all 1s.  ` `    ``static` `int` `minOperation(``boolean` `arr[][])  ` `    ``{ ` `        ``int` `ans = ``0``; ` `        ``for` `(``int` `i = N - ``1``; i >= ``0``; i--)  ` `        ``{ ` `            ``for` `(``int` `j = M - ``1``; j >= ``0``; j--) ` `            ``{ ` `                ``// check if this cell equals 0  ` `                ``if` `(arr[i][j] == ``false``)  ` `                ``{ ` `                    ``// increase the number of moves  ` `                    ``ans++; ` ` `  `                    ``// flip from this cell to the start point  ` `                    ``for` `(``int` `k = ``0``; k <= i; k++) ` `                    ``{ ` `                        ``for` `(``int` `h = ``0``; h <= j; h++)  ` `                        ``{ ` `                            ``// flip the cell  ` `                            ``if` `(arr[k][h] == ``true``)  ` `                            ``{ ` `                                ``arr[k][h] = ``false``; ` `                            ``} ``else` `{ ` `                                ``arr[k][h] = ``true``; ` `                            ``} ` `                        ``} ` `                    ``} ` `                ``} ` `            ``} ` `        ``} ` `        ``return` `ans; ` `    ``} ` ` `  `// Driven Program  ` `    ``public` `static` `void` `main(String[] args) { ` ` `  `        ``boolean` `mat[][] ` `                ``= { ` `                    ``{``false``, ``false``, ``true``, ``true``, ``true``}, ` `                    ``{``false``, ``false``, ``false``, ``true``, ``true``}, ` `                    ``{``false``, ``false``, ``false``, ``true``, ``true``}, ` `                    ``{``true``, ``true``, ``true``, ``true``, ``true``}, ` `                    ``{``true``, ``true``, ``true``, ``true``, ``true``} ` `                ``}; ` ` `  `        ``System.out.println(minOperation(mat)); ` `    ``} ` `} ` ` `  `// This code is contributed  ` `// by PrinciRaj1992 `

## Python 3

 `# Python 3 program to find ` `# minimum operations required ` `# to set all the element of ` `# binary matrix ` ` `  `# Return minimum operation  ` `# required to make all 1s. ` `def` `minOperation(arr): ` `    ``ans ``=` `0` `    ``for` `i ``in` `range``(N ``-` `1``, ``-``1``, ``-``1``): ` `        ``for` `j ``in` `range``(M ``-` `1``, ``-``1``, ``-``1``): ` `             `  `            ``# check if this  ` `            ``# cell equals 0 ` `            ``if``(arr[i][j] ``=``=` `0``): ` `     `  `                ``# increase the ` `                ``# number of moves ` `                ``ans ``+``=` `1` ` `  `                ``# flip from this cell  ` `                ``# to the start point ` `                ``for` `k ``in` `range``(i ``+` `1``): ` `                    ``for` `h ``in` `range``(j ``+` `1``): ` `                     `  `                        ``# flip the cell ` `                        ``if` `(arr[k][h] ``=``=` `1``): ` `                            ``arr[k][h] ``=` `0` `                        ``else``: ` `                            ``arr[k][h] ``=` `1` `                     `  `    ``return` `ans ` ` `  `# Driver Code ` `mat ``=` `[[ ``0``, ``0``, ``1``, ``1``, ``1``], ` `       ``[``0``, ``0``, ``0``, ``1``, ``1``], ` `       ``[``0``, ``0``, ``0``, ``1``, ``1``], ` `       ``[``1``, ``1``, ``1``, ``1``, ``1``], ` `       ``[``1``, ``1``, ``1``, ``1``, ``1``]] ` `M ``=` `5` `N ``=` `5` ` `  `print``(minOperation(mat)) ` ` `  `# This code is contributed ` `# by ChitraNayal `

## C#

 `using` `System; ` ` `  `// C# program to find minimum operations required   ` `// to set all the element of binary matrix   ` ` `  `public` `class` `GFG ` `{ ` ` `  `    ``public` `const` `int` `N = 5; ` `    ``public` `const` `int` `M = 5; ` ` `  `// Return minimum operation required to make all 1s.   ` `    ``public` `static` `int` `minOperation(``bool``[][] arr) ` `    ``{ ` `        ``int` `ans = 0; ` `        ``for` `(``int` `i = N - 1; i >= 0; i--) ` `        ``{ ` `            ``for` `(``int` `j = M - 1; j >= 0; j--) ` `            ``{ ` `                ``// check if this cell equals 0   ` `                ``if` `(arr[i][j] == ``false``) ` `                ``{ ` `                    ``// increase the number of moves   ` `                    ``ans++; ` ` `  `                    ``// flip from this cell to the start point   ` `                    ``for` `(``int` `k = 0; k <= i; k++) ` `                    ``{ ` `                        ``for` `(``int` `h = 0; h <= j; h++) ` `                        ``{ ` `                            ``// flip the cell   ` `                            ``if` `(arr[k][h] == ``true``) ` `                            ``{ ` `                                ``arr[k][h] = ``false``; ` `                            ``} ` `                            ``else` `                            ``{ ` `                                ``arr[k][h] = ``true``; ` `                            ``} ` `                        ``} ` `                    ``} ` `                ``} ` `            ``} ` `        ``} ` `        ``return` `ans; ` `    ``} ` ` `  `// Driven Program   ` `    ``public` `static` `void` `Main(``string``[] args) ` `    ``{ ` ` `  `        ``bool``[][] mat = ``new` `bool``[][] ` `        ``{ ` `            ``new` `bool``[] {``false``, ``false``, ``true``, ``true``, ``true``}, ` `            ``new` `bool``[] {``false``, ``false``, ``false``, ``true``, ``true``}, ` `            ``new` `bool``[] {``false``, ``false``, ``false``, ``true``, ``true``}, ` `            ``new` `bool``[] {``true``, ``true``, ``true``, ``true``, ``true``}, ` `            ``new` `bool``[] {``true``, ``true``, ``true``, ``true``, ``true``} ` `        ``}; ` ` `  `        ``Console.WriteLine(minOperation(mat)); ` `    ``} ` `} ` ` `  `// This code is contributed by Shrikant13 `

## PHP

 `= 0; ``\$i``--) ` `    ``{ ` `        ``for` `(``\$j` `= ``\$M` `- 1; ` `             ``\$j` `>= 0; ``\$j``--) ` `        ``{ ` `            ``// check if this ` `            ``// cell equals 0 ` `            ``if``(``\$arr``[``\$i``][``\$j``] == 0) ` `            ``{ ` `                ``// increase the ` `                ``// number of moves ` `                ``\$ans``++; ` ` `  `                ``// flip from this cell  ` `                ``// to the start point ` `                ``for` `(``\$k` `= 0;  ` `                     ``\$k` `<= ``\$i``; ``\$k``++) ` `                ``{ ` `                    ``for` `(``\$h` `= 0; ` `                         ``\$h` `<= ``\$j``; ``\$h``++) ` `                    ``{ ` `                        ``// flip the cell ` `                        ``if` `(``\$arr``[``\$k``][``\$h``] == 1) ` `                            ``\$arr``[``\$k``][``\$h``] = 0; ` `                        ``else` `                            ``\$arr``[``\$k``][``\$h``] = 1; ` `                    ``} ` `                ``} ` `            ``} ` `        ``} ` `    ``} ` `    ``return` `\$ans``; ` `} ` ` `  `// Driver Code ` `\$mat` `= ``array``(``array``(0, 0, 1, 1, 1), ` `             ``array``(0, 0, 0, 1, 1), ` `             ``array``(0, 0, 0, 1, 1), ` `             ``array``(1, 1, 1, 1, 1), ` `             ``array``(1, 1, 1, 1, 1)); ` ` `  `echo` `minOperation(``\$mat``); ` ` `  `// This code is contributed  ` `// by ChitraNayal ` `?> `

Output:

```3
```

Time Complexity: O(N2 * M2).
Space Complexity: O(N*M).

This article is contributed by Anuj Chauhan. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Article Tags :
Practice Tags :

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.