Skip to content
Related Articles
Minimum numbers with one’s place as 9 to be added to get N
• Last Updated : 21 Apr, 2021

Given an integer N, the task is to find the minimum count of numbers which needs to be added to get N. (All such numbers must have 9 as one’s digit)

Examples:

Input: N = 27
Output:
27 = 9 + 9 + 9

Input: N = 109
Output:
109 itself has 9 as one’s digit.

Approach:

• Check the one’s digit of N, based on one’s digit the minimum count of numbers which needs to be added can be easily found.
• If one’s digit is 9: The answer will 1 as the number itself has 9 as its one’s place digit.
• If one’s digit is:
1. 1: 9 has to be added 9 times i.e. (9 * 9 = 81).
2. 2: 9 has to be added 8 times i.e. (9 * 8 = 72).
3. 3: 9 has to be added 7 times i.e. (9 * 7 = 63).
4. 4: 9 has to be added 6 times i.e. (9 * 6 = 54).
5. 5: 9 has to be added 5 times i.e. (9 * 5 = 45).
6. 6: 9 has to be added 4 times i.e. (9 * 4 = 36).
7. 7: 9 has to be added 3 times i.e. (9 * 3 = 27).
8. 8: 9 has to be added 2 times i.e. (9 * 2 = 18).
9. 0: 9 has to be added 10 times i.e. (9 * 10 = 90).
• Observation here is that only the minimum multiple count for all the cases above mentioned have to be added. This is because say for one’s digit as 4, all 9 (one’s place) from 6 numbers can be used and the result can be subtracted from N say it is M. Now, M will have 0 in one’s place. So, just use 5 numbers as 9 and sixth number as (M + 9).

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function to find minimum count``// of numbers(with one's digit 9)``// that sum up to N``int` `findMin(``int` `N)``{``    ``// Fetch one's digit``    ``int` `digit = N % 10;` `    ``// Apply Cases mentioned in approach``    ``switch` `(digit) {``    ``case` `0:``        ``if` `(N >= 90)``            ``return` `10;``        ``break``;``    ``case` `1:``        ``if` `(N >= 81)``            ``return` `9;``        ``break``;``    ``case` `2:``        ``if` `(N >= 72)``            ``return` `8;``        ``break``;``    ``case` `3:``        ``if` `(N >= 63)``            ``return` `7;``        ``break``;``    ``case` `4:``        ``if` `(N >= 54)``            ``return` `6;``        ``break``;``    ``case` `5:``        ``if` `(N >= 45)``            ``return` `5;``        ``break``;``    ``case` `6:``        ``if` `(N >= 36)``            ``return` `4;``        ``break``;``    ``case` `7:``        ``if` `(N >= 27)``            ``return` `3;``        ``break``;``    ``case` `8:``        ``if` `(N >= 18)``            ``return` `2;``        ``break``;``    ``case` `9:``        ``if` `(N >= 9)``            ``return` `1;``        ``break``;``    ``}` `    ``// If no possible answer exists``    ``return` `-1;``}` `// Driver code``int` `main()``{``    ``int` `N = 27;` `    ``cout << findMin(N);``}`

## Java

 `// Java implementation of the approach``class` `GFG``{``    ` `    ``// Function to find minimum count``    ``// of numbers(with one's digit 9)``    ``// that sum up to N``    ``static` `int` `findMin(``int` `N)``    ``{``        ``// Fetch one's digit``        ``int` `digit = N % ``10``;``    ` `        ``// Apply Cases mentioned in approach``        ``switch` `(digit)``        ``{``            ``case` `0``:``                ``if` `(N >= ``90``)``                    ``return` `10``;``                ``break``;``            ``case` `1``:``                ``if` `(N >= ``81``)``                    ``return` `9``;``                ``break``;``            ``case` `2``:``                ``if` `(N >= ``72``)``                    ``return` `8``;``                ``break``;``            ``case` `3``:``                ``if` `(N >= ``63``)``                    ``return` `7``;``                ``break``;``            ``case` `4``:``                ``if` `(N >= ``54``)``                    ``return` `6``;``                ``break``;``            ``case` `5``:``                ``if` `(N >= ``45``)``                    ``return` `5``;``                ``break``;``            ``case` `6``:``                ``if` `(N >= ``36``)``                    ``return` `4``;``                ``break``;``            ``case` `7``:``                ``if` `(N >= ``27``)``                    ``return` `3``;``                ``break``;``            ``case` `8``:``                ``if` `(N >= ``18``)``                    ``return` `2``;``                ``break``;``            ``case` `9``:``                ``if` `(N >= ``9``)``                    ``return` `1``;``                ``break``;``        ``}``    ` `        ``// If no possible answer exists``        ``return` `-``1``;``    ``}``    ` `    ``// Driver code``    ``public` `static` `void` `main (String[] args)``    ``{``        ``int` `N = ``27``;``    ` `        ``System.out.println(findMin(N));``    ``}``}` `// This code is contributed by AnkitRai01`

## Python3

 `# Python3 implementation of the approach` `# Function to find minimum count``# of numbers(with one's digit 9)``# that sum up to N``def` `findMin(N: ``int``):` `    ``# Fetch one's digit``    ``digit ``=` `N ``%` `10` `    ``# Apply Cases mentioned in approach``    ``if` `digit ``=``=` `0` `and` `N >``=` `90``:``        ``return` `10``    ``elif` `digit ``=``=` `1` `and` `N >``=` `81``:``        ``return` `9``    ``elif` `digit ``=``=` `2` `and` `N >``=` `72``:``        ``return` `8``    ``elif` `digit ``=``=` `3` `and` `N >``=` `63``:``        ``return` `7``    ``elif` `digit ``=``=` `4` `and` `N >``=` `54``:``        ``return` `6``    ``elif` `digit ``=``=` `5` `and` `N >``=` `45``:``        ``return` `5``    ``elif` `digit ``=``=` `6` `and` `N >``=` `36``:``        ``return` `4``    ``elif` `digit ``=``=` `7` `and` `N >``=` `27``:``        ``return` `3``    ``elif` `digit ``=``=` `8` `and` `N >``=` `18``:``        ``return` `2``    ``elif` `digit ``=``=` `9` `and` `N >``=` `9``:``        ``return` `1` `    ``# If no possible answer exists``    ``return` `-``1` `# Driver Code``if` `__name__ ``=``=` `"__main__"``:``    ``N ``=` `27``    ``print``(findMin(N))` `# This code is contributed by``# sanjeev2552`

## C#

 `// C# implementation of the approach``using` `System;        ``    ` `class` `GFG``{``    ` `    ``// Function to find minimum count``    ``// of numbers(with one's digit 9)``    ``// that sum up to N``    ``static` `int` `findMin(``int` `N)``    ``{``        ``// Fetch one's digit``        ``int` `digit = N % 10;``    ` `        ``// Apply Cases mentioned in approach``        ``switch` `(digit)``        ``{``            ``case` `0:``                ``if` `(N >= 90)``                    ``return` `10;``                ``break``;``            ``case` `1:``                ``if` `(N >= 81)``                    ``return` `9;``                ``break``;``            ``case` `2:``                ``if` `(N >= 72)``                    ``return` `8;``                ``break``;``            ``case` `3:``                ``if` `(N >= 63)``                    ``return` `7;``                ``break``;``            ``case` `4:``                ``if` `(N >= 54)``                    ``return` `6;``                ``break``;``            ``case` `5:``                ``if` `(N >= 45)``                    ``return` `5;``                ``break``;``            ``case` `6:``                ``if` `(N >= 36)``                    ``return` `4;``                ``break``;``            ``case` `7:``                ``if` `(N >= 27)``                    ``return` `3;``                ``break``;``            ``case` `8:``                ``if` `(N >= 18)``                    ``return` `2;``                ``break``;``            ``case` `9:``                ``if` `(N >= 9)``                    ``return` `1;``                ``break``;``        ``}``    ` `        ``// If no possible answer exists``        ``return` `-1;``    ``}``    ` `    ``// Driver code``    ``public` `static` `void` `Main (String[] args)``    ``{``        ``int` `N = 27;``    ` `        ``Console.WriteLine(findMin(N));``    ``}``}` `// This code is contributed by 29AjayKumar`

## Javascript

 ``
Output:
`3`

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes

My Personal Notes arrow_drop_up