Minimum numbers (smaller than or equal to N) with sum S

Given N numbers(1, 2, 3, ….N) and a number S. The task is to print the minimum number of numbers that sum up to give S.

Examples:

Input: N = 5, S = 11
Output: 3
Three numbers (smaller than or equal to N) can be any of the given combinations.
(3, 4, 4)
(2, 4, 5)
(1, 5, 5)
(3, 3, 5)

Input: N = 1, S = 10
Output: 10

Approach: Greedily we choose N as many times we can, and then if anything less than N is left we will choose that number which adds up to give S, hence the total number of numbers are (S/N) + 1(if S%N>0).

Below is the implementation of the above approach.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find the minimum numbers
// required to get to S
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the minimum
// numbers required to get to S
int minimumNumbers(int n, int s)
{
    if (s % n)
        return s / n + 1;
    else
        return s / n;
}
  
// Driver Code
int main()
{
    int n = 5;
    int s = 11;
    cout << minimumNumbers(n, s);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the minimum numbers
// required to get to S
import java.io.*;
  
class GFG {
      
  
// Function to find the minimum
// numbers required to get to S
static int minimumNumbers(int n, int s)
{
    if ((s % n)>0)
        return s / n + 1;
    else
        return s / n;
}
  
// Driver Code
  
    public static void main (String[] args) {
        int n = 5;
    int s = 11;
    System.out.println(minimumNumbers(n, s));
    }
}
// This code is contributed by shs..

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to find the 
# minimum numbers required to get to S
  
# Function to find the minimum
# numbers required to get to S
def minimumNumbers(n, s):
  
    if (s % n):
        return s / n + 1;
    else:
        return s / n;
  
# Driver Code
n = 5;
s = 11;
print(int(minimumNumbers(n, s)));
  
# This code is contributed 
# by Shivi_Aggarwal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the minimum numbers
// required to get to S
using System;
  
class GFG {
      
  
// Function to find the minimum
// numbers required to get to S
static int minimumNumbers(int n, int s)
{
    if ((s % n)>0)
        return s / n + 1;
    else
        return s / n;
}
  
// Driver Code
  
    public static void Main () {
        int n = 5;
    int s = 11;
    Console.WriteLine(minimumNumbers(n, s));
    }
}
// This code is contributed by shs..

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find the minimum numbers
// required to get to S
  
// Function to find the minimum
// numbers required to get to S
function minimumNumbers($n, $s)
{
    if ($s % $n)
        return round($s / $n + 1);
    else
        return round($s /$n);
}
  
// Driver Code
$n = 5;
$s = 11;
echo minimumNumbers($n, $s);
  
// This code is contributed by shs..
?>

chevron_right


Output:

3


My Personal Notes arrow_drop_up

Just another competitive programmer

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : Shashank12, Shivi_Aggarwal



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.