Minimum number of points to be removed to get remaining points on one side of axis

We are given n points in a Cartesian plane. Our task is to find the minimum number of points that should be removed in order to get the remaining points on one side of any axis.

Examples :

Input : 4
        1 1
        2 2
       -1 -1
       -2 2
Output : 1
Explanation :
If we remove (-1, -1) then all the remaining 
points are above x-axis. Thus the answer is 1.

Input : 3
        1 10
        2 3
        4 11
Output : 0
Explanation :
All points are already above X-axis. Hence the
answer is 0.  

Approach :
This problem is a simple example of constructive brute force algorithm on Geometry. The solution can be approached simply by finding the number of points on all sides of the X-axis and Y-axis. The minimum of this will be the answer.

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find minimum points to be moved
// so that all points are on same side.
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
  
// Structure to store the coordinates of a point.
struct Point 
{
    int x, y;
};
  
// Function to find the minimum number of points
int findmin(Point p[], int n)
{
    int a = 0, b = 0, c = 0, d = 0;
    for (int i = 0; i < n; i++) 
    {
        // Number of points on the left of Y-axis.
        if (p[i].x <= 0)         
            a++;
  
        // Number of points on the right of Y-axis.
        else if (p[i].x >= 0) 
            b++;
  
        // Number of points above X-axis.
        if (p[i].y >= 0) 
            c++;
  
        // Number of points below X-axis.
        else if (p[i].y <= 0) 
            d++;
    }
  
    return min({a, b, c, d});
}
  
// Driver Function
int main()
{
    Point p[] = { {1, 1}, {2, 2}, {-1, -1}, {-2, 2} };
    int n = sizeof(p)/sizeof(p[0]);
    cout << findmin(p, n);
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find minimum points to be moved 
// so that all points are on same side. 
import java.util.*;
  
class GFG
{
  
// Structure to store the coordinates of a point. 
static class Point 
    int x, y; 
  
    public Point(int x, int y) 
    {
        this.x = x;
        this.y = y;
    }
}; 
  
// Function to find the minimum number of points 
static int findmin(Point p[], int n) 
    int a = 0, b = 0, c = 0, d = 0
    for (int i = 0; i < n; i++) 
    
        // Number of points on the left of Y-axis. 
        if (p[i].x <= 0)     
            a++; 
  
        // Number of points on the right of Y-axis. 
        else if (p[i].x >= 0
            b++; 
  
        // Number of points above X-axis. 
        if (p[i].y >= 0
            c++; 
  
        // Number of points below X-axis. 
        else if (p[i].y <= 0
            d++; 
    
    return Math.min(Math.min(a, b), 
                    Math.min(c, d)); 
  
// Driver Code
public static void main(String[] args)
{
    Point p[] = {new Point(1, 1), new Point(2, 2), 
                 new Point(-1, -1), new Point(-2, 2)};
    int n = p.length;
    System.out.println(findmin(p, n));
}
}
  
// This code is contributed by PrinciRaj1992
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find minimum points to be 
# moved so that all points are on same side.
  
# Function to find the minimum number
# of points
def findmin(p, n):
  
    a, b, c, d = 0, 0, 0, 0
    for i in range(n): 
          
        # Number of points on the left 
        # of Y-axis.
        if (p[i][0] <= 0):     
            a += 1
  
        # Number of points on the right 
        # of Y-axis.
        elif (p[i][0] >= 0):
            b += 1
  
        # Number of points above X-axis.
        if (p[i][1] >= 0):
            c += 1
  
        # Number of points below X-axis.
        elif (p[i][1] <= 0):
            d += 1
  
    return min([a, b, c, d])
  
# Driver Code
p = [ [1, 1], [2, 2], [-1, -1], [-2, 2] ]
n = len(p)
print(findmin(p, n))
      
# This code is contributed by Mohit Kumar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# rogram to find minimum points to be moved 
// so that all points are on same side.
using System;
      
class GFG
{
  
// Structure to store the coordinates of a point. 
public class Point 
    public int x, y; 
  
    public Point(int x, int y) 
    {
        this.x = x;
        this.y = y;
    }
}; 
  
// Function to find the minimum number of points 
static int findmin(Point []p, int n) 
    int a = 0, b = 0, c = 0, d = 0; 
    for (int i = 0; i < n; i++) 
    
        // Number of points on the left of Y-axis. 
        if (p[i].x <= 0)     
            a++; 
  
        // Number of points on the right of Y-axis. 
        else if (p[i].x >= 0) 
            b++; 
  
        // Number of points above X-axis. 
        if (p[i].y >= 0) 
            c++; 
  
        // Number of points below X-axis. 
        else if (p[i].y <= 0) 
            d++; 
    
    return Math.Min(Math.Min(a, b), 
                    Math.Min(c, d)); 
  
// Driver Code
public static void Main(String[] args)
{
    Point []p = {new Point(1, 1), 
                 new Point(2, 2), 
                 new Point(-1, -1),
                 new Point(-2, 2)};
    int n = p.Length;
    Console.WriteLine(findmin(p, n));
}
}
      
// This code is contributed by Princi Singh
chevron_right


Output :
1

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :