Minimum number of points to be removed to get remaining points on one side of axis

• Difficulty Level : Easy
• Last Updated : 07 Aug, 2021

We are given n points in a Cartesian plane. Our task is to find the minimum number of points that should be removed in order to get the remaining points on one side of any axis.

Examples :

Input : 4
1 1
2 2
-1 -1
-2 2
Output : 1
Explanation :
If we remove (-1, -1) then all the remaining
points are above x-axis. Thus the answer is 1.

Input : 3
1 10
2 3
4 11
Output : 0
Explanation :
All points are already above X-axis. Hence the

Approach :
This problem is a simple example of a constructive brute force algorithm on Geometry. The solution can be approached simply by finding the number of points on all sides of the X-axis and Y-axis. The minimum of this will be the answer.

C++

 // CPP program to find minimum points to be moved// so that all points are on same side.#include using namespace std;typedef long long ll; // Structure to store the coordinates of a point.struct Point{    int x, y;}; // Function to find the minimum number of pointsint findmin(Point p[], int n){    int a = 0, b = 0, c = 0, d = 0;    for (int i = 0; i < n; i++)    {        // Number of points on the left of Y-axis.        if (p[i].x <= 0)                    a++;         // Number of points on the right of Y-axis.        else if (p[i].x >= 0)            b++;         // Number of points above X-axis.        if (p[i].y >= 0)            c++;         // Number of points below X-axis.        else if (p[i].y <= 0)            d++;    }     return min({a, b, c, d});} // Driver Functionint main(){    Point p[] = { {1, 1}, {2, 2}, {-1, -1}, {-2, 2} };    int n = sizeof(p)/sizeof(p);    cout << findmin(p, n);    return 0;}

Java

 // Java program to find minimum points to be moved// so that all points are on same side.import java.util.*; class GFG{ // Structure to store the coordinates of a point.static class Point{    int x, y;     public Point(int x, int y)    {        this.x = x;        this.y = y;    }}; // Function to find the minimum number of pointsstatic int findmin(Point p[], int n){    int a = 0, b = 0, c = 0, d = 0;    for (int i = 0; i < n; i++)    {        // Number of points on the left of Y-axis.        if (p[i].x <= 0)                a++;         // Number of points on the right of Y-axis.        else if (p[i].x >= 0)            b++;         // Number of points above X-axis.        if (p[i].y >= 0)            c++;         // Number of points below X-axis.        else if (p[i].y <= 0)            d++;    }    return Math.min(Math.min(a, b),                    Math.min(c, d));} // Driver Codepublic static void main(String[] args){    Point p[] = {new Point(1, 1), new Point(2, 2),                 new Point(-1, -1), new Point(-2, 2)};    int n = p.length;    System.out.println(findmin(p, n));}} // This code is contributed by PrinciRaj1992

Python3

 # Python3 program to find minimum points to be# moved so that all points are on same side. # Function to find the minimum number# of pointsdef findmin(p, n):     a, b, c, d = 0, 0, 0, 0    for i in range(n):                 # Number of points on the left        # of Y-axis.        if (p[i] <= 0):                a += 1         # Number of points on the right        # of Y-axis.        elif (p[i] >= 0):            b += 1         # Number of points above X-axis.        if (p[i] >= 0):            c += 1         # Number of points below X-axis.        elif (p[i] <= 0):            d += 1     return min([a, b, c, d]) # Driver Codep = [ [1, 1], [2, 2], [-1, -1], [-2, 2] ]n = len(p)print(findmin(p, n))     # This code is contributed by Mohit Kumar

C#

 // C# program to find minimum points to be moved// so that all points are on same side.using System;     class GFG{ // Structure to store the coordinates of a point.public class Point{    public int x, y;     public Point(int x, int y)    {        this.x = x;        this.y = y;    }}; // Function to find the minimum number of pointsstatic int findmin(Point []p, int n){    int a = 0, b = 0, c = 0, d = 0;    for (int i = 0; i < n; i++)    {        // Number of points on the left of Y-axis.        if (p[i].x <= 0)                a++;         // Number of points on the right of Y-axis.        else if (p[i].x >= 0)            b++;         // Number of points above X-axis.        if (p[i].y >= 0)            c++;         // Number of points below X-axis.        else if (p[i].y <= 0)            d++;    }    return Math.Min(Math.Min(a, b),                    Math.Min(c, d));} // Driver Codepublic static void Main(String[] args){    Point []p = {new Point(1, 1),                 new Point(2, 2),                 new Point(-1, -1),                 new Point(-2, 2)};    int n = p.Length;    Console.WriteLine(findmin(p, n));}}     // This code is contributed by Princi Singh

Javascript



Output:

1

My Personal Notes arrow_drop_up