Minimum number operations required to convert n to m | Set-2

Given two integers n and m and a and b, in a single operation n can be multiplied by either a or b. The task is to convert n to m with a minimum number of given operation. If it is impossible to convert n to m with the given operation then print -1.

Examples:

Input: n = 120, m = 51840, a = 2, b = 3
Output: 7
120 * 2 * 2 * 2 * 2 * 3 * 3 * 3 = 51840

Input: n = 10, m = 50, a = 5, b = 7
Output: 1
10 * 5 = 50 

In the previous post, we discussed an approach using division.

In this post, we will use an approach which finds the minimum number of operations using recursion. The recursion will consist of two states, the number being multiplied by a or by b, and counting the steps. The minimum of both the steps will be the answer.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the above approach
  
#include <bits/stdc++.h>
using namespace std;
#define MAXN 10000000
  
// Function to find the minimum number of steps
int minimumSteps(int n, int m, int a, int b)
{
    // If n exceeds M
    if (n > m)
        return MAXN;
  
    // If N reaches the target
    if (n == m)
        return 0;
  
    // The minimum of both the states
    // will be the answer
    return min(1 + minimumSteps(n * a, m, a, b),
               1 + minimumSteps(n * b, m, a, b));
}
  
// Driver code
int main()
{
    int n = 120, m = 51840;
    int a = 2, b = 3;
    cout << minimumSteps(n, m, a, b);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach
class GFG
{
    static int MAXN = 10000000;
      
    // Function to find the minimum number of steps
    static int minimumSteps(int n, int m, int a, int b)
    {
        // If n exceeds M
        if (n > m)
            return MAXN;
      
        // If N reaches the target
        if (n == m)
            return 0;
      
        // The minimum of both the states
        // will be the answer
        return Math.min(1 + minimumSteps(n * a, m, a, b),
                1 + minimumSteps(n * b, m, a, b));
    }
      
    // Driver code
    public static void main (String[] args)
    {
        int n = 120, m = 51840;
        int a = 2, b = 3;
        System.out.println(minimumSteps(n, m, a, b));
    }
}
  
// This code is contributed by ihritik

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 implementation of the 
# above approach
MAXN = 10000000
  
# Function to find the minimum 
# number of steps
def minimumSteps(n, m, a, b):
      
    # If n exceeds M
    if (n > m):
        return MAXN
  
    # If N reaches the target
    if (n == m):
        return 0
  
    # The minimum of both the states
    # will be the answer
    return min(1 + minimumSteps(n * a, m, a, b), 
               1 + minimumSteps(n * b, m, a, b))
  
# Driver code
if __name__ == '__main__':
    n = 120
    m = 51840
    a = 2
    b = 3
    print(minimumSteps(n, m, a, b))
  
# This code is contributed by
# Surendra_Gangwar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach
using System;
  
class GFG
{
    static int MAXN = 10000000;
      
    // Function to find the minimum number of steps
    static int minimumSteps(int n, int m, int a, int b)
    {
        // If n exceeds M
        if (n > m)
            return MAXN;
      
        // If N reaches the target
        if (n == m)
            return 0;
      
        // The minimum of both the states
        // will be the answer
        return Math.Min(1 + minimumSteps(n * a, m, a, b),
                1 + minimumSteps(n * b, m, a, b));
    }
      
    // Driver code
    public static void Main ()
    {
        int n = 120, m = 51840;
        int a = 2, b = 3;
        Console.WriteLine(minimumSteps(n, m, a, b));
    }
}
  
// This code is contributed by ihritik

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of the above approach
$MAXN = 10000000;
  
// Function to find the minimum number of steps
function minimumSteps($n, $m, $a, $b)
{
    global $MAXN;
      
    // If n exceeds M
    if ($n > $m)
        return $MAXN;
  
    // If N reaches the target
    if ($n == $m)
        return 0;
  
    // The minimum of both the states
    // will be the answer
    return min(1 + minimumSteps($n * $a, $m, $a, $b),
               1 + minimumSteps($n * $b, $m, $a, $b));
}
  
// Driver code
$n = 120; $m = 51840;
$a = 2; $b = 3;
echo minimumSteps($n, $m, $a, $b);
  
// This code is contributed by Akanksha Rai
?>

chevron_right


Output:

7


My Personal Notes arrow_drop_up

Striver(underscore)79 at Codechef and codeforces D

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.