Minimum number of steps to convert a given matrix into Upper Hessenberg matrix

Given a matrix of order NxN, Find the minimum number of steps to convert given matrix into Upper Hessenberg matrix. In each step, the only operation allowed is to decrease or increase any element value by 1.

Examples:

Input : N=3
1 2 8
1 3 4
2 3 4
Output :2
Decrease the element a[2][0] 2 times.
Now the matrix is upper hessenberg

Input : N=4
1 2 2 3
1 3 4 2
3 3 4 2
-1 0 1 4
Output :4

Approach:



Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of above approach
#include <bits/stdc++.h>
#define N 4
using namespace std;
  
// Function to count steps in
// conversion of matrix into upper
// Hessenberg matrix
int stepsRequired(int arr[][N])
{
    int result = 0;
    for (int i = 0; i < N; i++) {
  
        for (int j = 0; j < N; j++) {
  
            // if element is below sub-diagonal
            // add abs(element) into result
            if (i > j + 1)
                result += abs(arr[i][j]);
        }
    }
    return result;
}
  
// Driver code
int main()
{
    int arr[N][N] = { 1, 2, 3, 4,
                      3, 1, 0, 3,
                      3, 2, 1, 3,
                     -3, 4, 2, 1 };
  
    // Function call
    cout << stepsRequired(arr);
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of above approach
class GFG
{
      
    static int N = 4;
      
    // Function to count steps in
    // conversion of matrix into upper
    // Hessenberg matrix
    static int stepsRequired(int arr[][])
    {
        int result = 0;
        for (int i = 0; i < N; i++)
        {
      
            for (int j = 0; j < N; j++)
            {
      
                // if element is below sub-diagonal
                // add abs(element) into result
                if (i > j + 1)
                    result += Math.abs(arr[i][j]);
            }
        }
        return result;
    }
      
    // Driver code
    public static void main (String[] args)
    {
          
        int arr [][] = new int [][] {{1, 2, 3, 4},
                        {3, 1, 0, 3},
                        {3, 2, 1, 3},
                        {-3, 4, 2, 1 }};
      
        // Function call
        System.out.println(stepsRequired(arr));
    }
}
  
// This code is contributed by ihritik
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of above approach
N = 4;
  
# Function to count steps in
# conversion of matrix into upper
# Hessenberg matrix
def stepsRequired(arr):
    result = 0;
    for i in range(N):
  
        for j in range(N):
  
            # if element is below sub-diagonal
            # add abs(element) into result
            if (i > j + 1):
                result += abs(arr[i][j]);
  
    return result;
  
# Driver code
arr =   [[1, 2, 3, 4],
         [3, 1, 0, 3],
         [3, 2, 1, 3],
         [-3, 4, 2, 1]];
  
# Function call
print(stepsRequired(arr));
  
# This code is contributed by Rajput-Ji
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of above approach
using System;
  
class GFG
{
      
    static int N = 4;
      
    // Function to count steps in
    // conversion of matrix into upper
    // Hessenberg matrix
    static int stepsRequired(int [, ] arr)
    {
        int result = 0;
        for (int i = 0; i < N; i++)
        {
      
            for (int j = 0; j < N; j++) 
            {
      
                // if element is below sub-diagonal
                // add abs(element) into result
                if (i > j + 1)
                    result += Math.Abs(arr[i, j]);
            }
        }
        return result;
    }
      
    // Driver code
    public static void Main () 
    {
          
        int [ , ] arr = new int [, ] { {1, 2, 3, 4},
                        {3, 1, 0, 3},
                        {3, 2, 1, 3},
                        {-3, 4, 2, 1}};
      
        // Function call
        Console.WriteLine(stepsRequired(arr));
      
    }
}
  
// This code is contributed by ihritik
chevron_right

Output:
10

Time complexity : O(N*N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : ihritik, Rajput-Ji, Akanksha_Rai

Article Tags :
Practice Tags :