# Minimum number of steps to convert a given matrix into Upper Hessenberg matrix

Given a matrix of order NxN, Find the minimum number of steps to convert given matrix into Upper Hessenberg matrix. In each step, the only operation allowed is to decrease or increase any element value by 1.

Examples:

Input : N=3
1 2 8
1 3 4
2 3 4
Output :2
Decrease the element a 2 times.
Now the matrix is upper hessenberg

Input : N=4
1 2 2 3
1 3 4 2
3 3 4 2
-1 0 1 4
Output :4

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:

• For a matrix to be Upper Hessenberg matrix all of its elements below sub-diagonal must be equal zero, i.e Aij = 0 for all i > j+1..
• The minimum number of steps required to convert a given matrix in the upper Hessenberg matrix is equal to the sum of the absolute values of all Aij for all i > j + 1.
• The modulus value of the element is taken into account because both the increase and decrease of the element count as a single step.

Below is the implementation of the above approach:

 `// C++ implementation of above approach ` `#include ` `#define N 4 ` `using` `namespace` `std; ` ` `  `// Function to count steps in ` `// conversion of matrix into upper ` `// Hessenberg matrix ` `int` `stepsRequired(``int` `arr[][N]) ` `{ ` `    ``int` `result = 0; ` `    ``for` `(``int` `i = 0; i < N; i++) { ` ` `  `        ``for` `(``int` `j = 0; j < N; j++) { ` ` `  `            ``// if element is below sub-diagonal ` `            ``// add abs(element) into result ` `            ``if` `(i > j + 1) ` `                ``result += ``abs``(arr[i][j]); ` `        ``} ` `    ``} ` `    ``return` `result; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `arr[N][N] = { 1, 2, 3, 4, ` `                      ``3, 1, 0, 3, ` `                      ``3, 2, 1, 3, ` `                     ``-3, 4, 2, 1 }; ` ` `  `    ``// Function call ` `    ``cout << stepsRequired(arr); ` `    ``return` `0; ` `} `

 `// Java implementation of above approach ` `class` `GFG ` `{ ` `     `  `    ``static` `int` `N = ``4``; ` `     `  `    ``// Function to count steps in ` `    ``// conversion of matrix into upper ` `    ``// Hessenberg matrix ` `    ``static` `int` `stepsRequired(``int` `arr[][]) ` `    ``{ ` `        ``int` `result = ``0``; ` `        ``for` `(``int` `i = ``0``; i < N; i++) ` `        ``{ ` `     `  `            ``for` `(``int` `j = ``0``; j < N; j++) ` `            ``{ ` `     `  `                ``// if element is below sub-diagonal ` `                ``// add abs(element) into result ` `                ``if` `(i > j + ``1``) ` `                    ``result += Math.abs(arr[i][j]); ` `            ``} ` `        ``} ` `        ``return` `result; ` `    ``} ` `     `  `    ``// Driver code ` `    ``public` `static` `void` `main (String[] args) ` `    ``{ ` `         `  `        ``int` `arr [][] = ``new` `int` `[][] {{``1``, ``2``, ``3``, ``4``}, ` `                        ``{``3``, ``1``, ``0``, ``3``}, ` `                        ``{``3``, ``2``, ``1``, ``3``}, ` `                        ``{-``3``, ``4``, ``2``, ``1` `}}; ` `     `  `        ``// Function call ` `        ``System.out.println(stepsRequired(arr)); ` `    ``} ` `} ` ` `  `// This code is contributed by ihritik `

 `# Python3 implementation of above approach ` `N ``=` `4``; ` ` `  `# Function to count steps in ` `# conversion of matrix into upper ` `# Hessenberg matrix ` `def` `stepsRequired(arr): ` `    ``result ``=` `0``; ` `    ``for` `i ``in` `range``(N): ` ` `  `        ``for` `j ``in` `range``(N): ` ` `  `            ``# if element is below sub-diagonal ` `            ``# add abs(element) into result ` `            ``if` `(i > j ``+` `1``): ` `                ``result ``+``=` `abs``(arr[i][j]); ` ` `  `    ``return` `result; ` ` `  `# Driver code ` `arr ``=`   `[[``1``, ``2``, ``3``, ``4``], ` `         ``[``3``, ``1``, ``0``, ``3``], ` `         ``[``3``, ``2``, ``1``, ``3``], ` `         ``[``-``3``, ``4``, ``2``, ``1``]]; ` ` `  `# Function call ` `print``(stepsRequired(arr)); ` ` `  `# This code is contributed by Rajput-Ji `

 `// C# implementation of above approach ` `using` `System; ` ` `  `class` `GFG ` `{ ` `     `  `    ``static` `int` `N = 4; ` `     `  `    ``// Function to count steps in ` `    ``// conversion of matrix into upper ` `    ``// Hessenberg matrix ` `    ``static` `int` `stepsRequired(``int` `[, ] arr) ` `    ``{ ` `        ``int` `result = 0; ` `        ``for` `(``int` `i = 0; i < N; i++) ` `        ``{ ` `     `  `            ``for` `(``int` `j = 0; j < N; j++)  ` `            ``{ ` `     `  `                ``// if element is below sub-diagonal ` `                ``// add abs(element) into result ` `                ``if` `(i > j + 1) ` `                    ``result += Math.Abs(arr[i, j]); ` `            ``} ` `        ``} ` `        ``return` `result; ` `    ``} ` `     `  `    ``// Driver code ` `    ``public` `static` `void` `Main ()  ` `    ``{ ` `         `  `        ``int` `[ , ] arr = ``new` `int` `[, ] { {1, 2, 3, 4}, ` `                        ``{3, 1, 0, 3}, ` `                        ``{3, 2, 1, 3}, ` `                        ``{-3, 4, 2, 1}}; ` `     `  `        ``// Function call ` `        ``Console.WriteLine(stepsRequired(arr)); ` `     `  `    ``} ` `} ` ` `  `// This code is contributed by ihritik `

Output:
```10
```

Time complexity : O(N*N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : ihritik, Rajput-Ji, Akanksha_Rai

Article Tags :
Practice Tags :