Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Minimum number of steps required to place all 1s at a single index

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given a binary array A[] of size N, where all 1s can be moved to its adjacent position, the task is to print an array res[] of size N, where res[i] contains the minimum number of steps required to move all the 1s at the ith index.

Examples:

Input: A[] = {1, 0, 1, 0}
Output: {2, 2, 2, 4}
Explanation: 
For i = 0, moving all 1s to 0th index requires 2 steps, i.e abs(0 – 0) + abs(0 – 2) = 2.
For i = 1, moving all 1s to 1st index requires 2 steps, i.e abs(1 – 0) + abs(1 – 2) = 2.
For i = 2, moving all 1s to 2nd index requires 2 steps, i.e abs(2 – 0) + abs(2 – 2) = 2.
For i = 3, moving all 1’s to 3rd index requires 4 steps, i.e abs(3 – 0) + abs(3 – 2) = 4.
Hence, res[] is {2, 2, 2, 4}

Input: A[] = {0, 0, 1, 0, 0, 1}
Output: {7, 5, 3, 3, 3, 3}
Explanation:
For i = 0, moving all 1s to 0th index requires 7 steps, i.e abs(2 – 0) + abs(5 – 0) = 7.
For i = 1, moving all 1s to 1st index requires 5 steps, i.e abs(2 – 1) + abs(5 – 1) = 5.
For i = 2, moving all 1s to 2nd index requires 3 steps, i.e abs(2 – 2) + abs(5 – 2) = 3.
For i = 3, moving all 1s to 3rd index will take 3 steps, i.e abs(2 – 2) + abs(5 – 3) = 3.
For i = 4, moving all 1s to 4th index will take 3 steps, i.e abs(2 – 4) + abs(5 – 4) = 3.
For i = 5, moving all 1s to 5th index will take 3 steps, i.e abs(2 – 5) + abs(5 – 5) = 3.
Hence, res[] is {7, 5, 3, 3, 3, 3}
 

 

Naive Approach: Follow the steps to solve the problem :

  1. Traverse the array.
  2. For every ith index, count the number of steps required to move all 1s to the ith index.
  3. Iterate over the range [0, N – 1], using a variable, say i.
    • Initialize steps = 0.
    • Iterate over the range [0, N – 1], using a variable j.
    • If A[j] is equal to 1, add abs(i – j) to steps.
  4. Print the minimum number of steps.

Time Complexity: O(N2)
Auxiliary Space: O(1)

Efficient Approach: To optimize the above approach, the idea is to use Prefix Sum. Follow the steps below to solve this problem:

  1. Traverse the array.
  2. Initialize an array, say left[], and initialize count = A[0].
  3. Iterate over the range [1, N – 1], and update left[i] = left[i – 1] + count, where count is the number of 1s on the left side of i.
  4. Initialize an array, say right[], and initialize count = A[N – 1].
  5. Iterate over the range [N – 2, 0], and update right[i] = right[i + 1] + count, where count is the number of 1s on the right side of i.
  6. Calculate and update the final answer in res[], where res[i] is the sum of the steps from left and right sides, i.e res[i] = right[i] + left[i]
  7. Print the array res[].

 Below is the implementation of the above approach:

C++




// C++ implementation of
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print minimum steps
// required to shift all 1s to a
// single index in a binary array
void minsteps(vector<int>& A)
{
    // Size of array
    int n = A.size();
 
    // Used to store cumulative sum
    vector<int> left(n, 0), right(n, 0), res(n, 0);
 
    // Initialize count
    int count = A[0];
 
    // Traverse the array in
    // forward direction
    for (int i = 1; i < n; i++) {
        // Steps needed to store all
        // previous ones to ith index
        left[i] = left[i - 1] + count;
 
        // Count number of 1s
        // present till i-th index
        count += A[i];
    }
 
    // Initialize count
    count = A[n - 1];
 
    // Traverse the array in
    // backward direction
    for (int i = n - 2; i >= 0; i--) {
        // Steps needed to store all 1s to
        // the right of i at current index
        right[i] = right[i + 1] + count;
 
        // Count number of 1s
        // present after i-th index
        count += A[i];
    }
 
    // Print the number of steps required
    for (int i = 0; i < n; i++) {
        res[i] = left[i] + right[i];
        cout << res[i] << " ";
    }
    cout << "\n";
}
 
// Driver Code
int main()
{
    vector<int> A = { 1, 0, 1, 0 };
    minsteps(A);
}

Java




// Java program for the above approach
import java.util.*;
import java.lang.*;
class GFG
{
 
  // Function to print minimum steps
  // required to shift all 1s to a
  // single index in a binary array
  static void minsteps(int[] A)
  {
     
    // Size of array
    int n = A.length;
 
    // Used to store cumulative sum
    int[] left = new int [n];
    Arrays.fill(left, 0);
    int[] right = new int [n];
    Arrays.fill(right, 0);
    int[] res = new int [n];
    Arrays.fill(res, 0);
 
    // Initialize count
    int count = A[0];
 
    // Traverse the array in
    // forward direction
    for (int i = 1; i < n; i++) {
      // Steps needed to store all
      // previous ones to ith index
      left[i] = left[i - 1] + count;
 
      // Count number of 1s
      // present till i-th index
      count += A[i];
    }
 
    // Initialize count
    count = A[n - 1];
 
    // Traverse the array in
    // backward direction
    for (int i = n - 2; i >= 0; i--) {
      // Steps needed to store all 1s to
      // the right of i at current index
      right[i] = right[i + 1] + count;
 
      // Count number of 1s
      // present after i-th index
      count += A[i];
    }
 
    // Print the number of steps required
    for (int i = 0; i < n; i++) {
      res[i] = left[i] + right[i];
      System.out.print(res[i] + " ");
    }
    System.out.println();
  }
 
  // Driver code
  public static void main(String[] args)
  {
    int[] A = { 1, 0, 1, 0 };
    minsteps(A);
  }
}
 
// This code is contributed by souravghosh0416.

Python3




# Python3 implementation of
# the above approach
 
# Function to print minimum steps
# required to shift all 1s to a
# single index in a binary array
def minsteps(A):
   
    # Size of array
    n = len(A)
 
    # Used to store cumulative sum
    left, right, res =[0]*n, [0]*n, [0]*n
 
    # Initialize count
    count = A[0]
 
    # Traverse the array in
    # forward direction
    for i in range(1, n):
       
        # Steps needed to store all
        # previous ones to ith index
        left[i] = left[i - 1] + count
 
        # Count number of 1s
        # present till i-th index
        count += A[i]
 
    # Initialize count
    count = A[n - 1]
 
    # Traverse the array in
    # backward direction
    for i in range(n - 2, -1, -1):
       
        # Steps needed to store all 1s to
        # the right of i at current index
        right[i] = right[i + 1] + count
 
        # Count number of 1s
        # present after i-th index
        count += A[i]
 
    # Print the number of steps required
    for i in range(n):
        res[i] = left[i] + right[i]
        print(res[i], end = " ")
    print()
 
# Driver Code
if __name__ == '__main__':
    A = [1, 0, 1, 0]
    minsteps(A)
 
# This code is contributed by mohit kumar 29.

C#




// C# Program to implement
// the above approach
using System;
class GFG
{
   
  // Function to print minimum steps
  // required to shift all 1s to a
  // single index in a binary array
  static void minsteps(int[] A)
  {
 
    // Size of array
    int n = A.Length;
 
    // Used to store cumulative sum
    int[] left = new int [n];
    for (int i = 1; i < n; i++) {
      left[i] = 0;
    }
 
    int[] right = new int [n];
    for (int i = 1; i < n; i++) {
      right[i] = 0;
    }
 
    int[] res = new int [n];
    for (int i = 1; i < n; i++) {
      res[i] = 0;
    }
 
    // Initialize count
    int count = A[0];
 
    // Traverse the array in
    // forward direction
    for (int i = 1; i < n; i++) {
      // Steps needed to store all
      // previous ones to ith index
      left[i] = left[i - 1] + count;
 
      // Count number of 1s
      // present till i-th index
      count += A[i];
    }
 
    // Initialize count
    count = A[n - 1];
 
    // Traverse the array in
    // backward direction
    for (int i = n - 2; i >= 0; i--) {
      // Steps needed to store all 1s to
      // the right of i at current index
      right[i] = right[i + 1] + count;
 
      // Count number of 1s
      // present after i-th index
      count += A[i];
    }
 
    // Print the number of steps required
    for (int i = 0; i < n; i++) {
      res[i] = left[i] + right[i];
      Console.Write(res[i] + " ");
    }
    Console.WriteLine();
  }
 
  // Driver Code
  public static void Main(String[] args)
  {
    int[] A = { 1, 0, 1, 0 };
    minsteps(A);
  }
}
 
// This code is contributed by susmitakundugoaldanga.

Javascript




<script>
 
// JavaScript program to implement
// the above approach
 
  // Function to print minimum steps
  // required to shift all 1s to a
  // single index in a binary array
  function minsteps(A)
  {
      
    // Size of array
    let n = A.length;
  
    // Used to store cumulative sum
    let left = Array.from({length: n}, (_, i) => 0);
    let right = Array.from({length: n}, (_, i) => 0);
    let res = Array.from({length: n}, (_, i) => 0);
  
    // Initialize count
    let count = A[0];
  
    // Traverse the array in
    // forward direction
    for (let i = 1; i < n; i++) {
      // Steps needed to store all
      // previous ones to ith index
      left[i] = left[i - 1] + count;
  
      // Count number of 1s
      // present till i-th index
      count += A[i];
    }
  
    // Initialize count
    count = A[n - 1];
  
    // Traverse the array in
    // backward direction
    for (let i = n - 2; i >= 0; i--) {
      // Steps needed to store all 1s to
      // the right of i at current index
      right[i] = right[i + 1] + count;
  
      // Count number of 1s
      // present after i-th index
      count += A[i];
    }
  
    // Print the number of steps required
    for (let i = 0; i < n; i++) {
      res[i] = left[i] + right[i];
      document.write(res[i] + " ");
    }
    document.write("<br/>");
  }
 
// Driver code   
    let A = [ 1, 0, 1, 0 ];
    minsteps(A);
 
// This code is contributed by sanjoy_62.
</script>

Output: 

2 2 2 4

 

Time Complexity: O(N)
Auxiliary Space: O(N)


My Personal Notes arrow_drop_up
Last Updated : 22 Dec, 2021
Like Article
Save Article
Similar Reads
Related Tutorials