# Minimum number of segments required such that each segment has distinct elements

Given an array of integers, the task is to find the minimum number of segments that the array elements can be divided into such that all the segments contain distinct elements.

Examples:

```Input: n=6 ; Array: 1, 7, 4, 3, 3, 8
Output: 2
Explanation:
Optimal way to create segments here is {1, 7, 4, 3} {3, 8}
Clearly, the answer is the maximum frequency of any element within the array i.e. '2'.
as '3' is the element which appears the most in the array (twice).

Input : n=5 ; Array: 2, 2, 3, 3, 3, 5
Output : 3
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:

• The optimal approach is to put all the distinct elements in a single segment.
• And then, put all other elements that have several occurrences one by one in new segments such that no segment contains repetitions of elements.
• So, the answer is the maximum frequency of any element within the given array.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function that counts the ` `// minimum segments required ` `void` `CountSegments(``int` `N, ``int` `a[]) ` `{ ` `    ``// all values are '0' initially ` `    ``int` `frequency[10001] = { 0 }; ` ` `  `    ``// count of segments ` `    ``int` `c = 0; ` ` `  `    ``// store frequency of every element ` `    ``for` `(``int` `i = 0; i < N; i++) { ` `        ``frequency[a[i]]++; ` `    ``} ` ` `  `    ``// find maximum frequency ` `    ``for` `(``int` `i = 0; i <= 10000; i++) ` `        ``c = max(c, frequency[i]); ` ` `  `    ``cout << c << ``"\n"``; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `N = 6; ` `    ``int` `a[] = { 1, 3, 4, 3, 2, 3 }; ` ` `  `    ``CountSegments(N, a); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach ` ` `  `import` `java.io.*; ` ` `  `class` `GFG { ` ` `  `// Function that counts the ` `// minimum segments required ` `static` `void` `CountSegments(``int` `N, ``int` `a[]) ` `{ ` `    ``// all values are '0' initially ` `    ``int` `frequency[] =  ``new` `int``[``10001``]; ` ` `  `    ``// count of segments ` `    ``int` `c = ``0``; ` ` `  `    ``// store frequency of every element ` `    ``for` `(``int` `i = ``0``; i < N; i++) { ` `        ``frequency[a[i]]++; ` `    ``} ` ` `  `    ``// find maximum frequency ` `    ``for` `(``int` `i = ``0``; i <= ``10000``; i++) ` `        ``c = Math.max(c, frequency[i]); ` ` `  `    ``System.out.println( c); ` `} ` ` `  `       ``// Driver code ` `    ``public` `static` `void` `main (String[] args) { ` `        ``int` `N = ``6``; ` `    ``int` `[]a = { ``1``, ``3``, ``4``, ``3``, ``2``, ``3` `}; ` ` `  `    ``CountSegments(N, a); ` `    ``} ` `} ` ` `  `// This Code is contributed by inder_verma.. `

## Python 3

 `# Python3 implementation of the approach ` ` `  `# Function that counts the ` `# minimum segments required ` `def` `CountSegments(N, a): ` `     `  `    ``# all values are '0' initially ` `    ``frequency ``=` `[``0``] ``*` `10001` ` `  `    ``# count of segments ` `    ``c ``=` `0` ` `  `    ``# store frequency of every element ` `    ``for` `i ``in` `range``(N) : ` `        ``frequency[a[i]] ``+``=` `1` ` `  `    ``# find maximum frequency ` `    ``for` `i ``in` `range``(``10001``): ` `        ``c ``=` `max``(c, frequency[i]) ` ` `  `    ``print``(c) ` ` `  `# Driver code ` `if` `__name__ ``=``=` `"__main__"``: ` `    ``N ``=` `6` `    ``a ``=` `[ ``1``, ``3``, ``4``, ``3``, ``2``, ``3` `]  ` `    ``CountSegments(N, a) ` ` `  `# This code is contributed  ` `# by ChitraNayal `

## C#

 `// C# implementation of the approach ` `using` `System; ` ` `  `class` `GFG ` `{ ` ` `  `// Function that counts the ` `// minimum segments required ` `static` `void` `CountSegments(``int` `N, ``int` `[]a) ` `{ ` `    ``// all values are '0' initially ` `    ``int` `[]frequency = ``new` `int``[10001]; ` ` `  `    ``// count of segments ` `    ``int` `c = 0; ` ` `  `    ``// store frequency of every element ` `    ``for` `(``int` `i = 0; i < N; i++)  ` `    ``{ ` `        ``frequency[a[i]]++; ` `    ``} ` ` `  `    ``// find maximum frequency ` `    ``for` `(``int` `i = 0; i <= 10000; i++) ` `        ``c = Math.Max(c, frequency[i]); ` ` `  `    ``Console.WriteLine( c); ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main ()  ` `{ ` `    ``int` `N = 6; ` `    ``int` `[]a = { 1, 3, 4, 3, 2, 3 }; ` ` `  `    ``CountSegments(N, a); ` `} ` `} ` ` `  `// This code is contributed  ` `// by inder_verma `

Output:

```3
```

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : inderDuMCA, chitranayal

Article Tags :
Practice Tags :

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.