Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Minimum number of palindromes required to express N as a sum | Set 1

  • Difficulty Level : Medium
  • Last Updated : 08 Oct, 2021

Given a number N, we have to find the minimum number of palindromes required to express N as a sum of them. 
Examples:
 

Input: N = 11 
Output:
11 is itself a palindrome.
Input: N = 65 
Output:
65 can be expressed as a sum of three palindromes (55, 9, 1).

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

 

Approach: 
We can use Dynamic Programming to solve this problem. The idea is to first generate all the palindromes up to N in a sorted fashion, and then we can treat this problem as a variation of the subset sum problem, where we have to find the size of the smallest subset such that its sum is N.
Below is the implementation of above approach: 
 

CPP




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// Declaring the DP table as global variable
vector<vector<long long> > dp;
 
 
// A utility for creating palindrome
int createPalindrome(int input, bool isOdd)
{
    int n = input;
    int palin = input;
 
    // checks if number of digits is odd or even
    // if odd then neglect the last digit of input in
    // finding reverse as in case of odd number of
    // digits middle element occur once
    if (isOdd)
        n /= 10;
 
    // Creates palindrome by just appending reverse
    // of number to itself
    while (n > 0) {
        palin = palin * 10 + (n % 10);
        n /= 10;
    }
 
    return palin;
}
 
// Function to generate palindromes
vector<int> generatePalindromes(int N)
{
    vector<int> palindromes;
    int number;
 
    // Run two times for odd and even length palindromes
    for (int j = 0; j < 2; j++) {
        // Creates palindrome numbers with first half as i.
        // Value of j decides whether we need an odd length
        // or even length palindrome.
        int i = 1;
        while ((number = createPalindrome(i++, j)) <= N)
            palindromes.push_back(number);
    }
 
    return palindromes;
}
 
// Function to find the minimum
// number of elements in a sorted
// array A[i..j] such that their sum is N
long long minimumSubsetSize(vector<int>& A, int i, int j, int N)
{
    if (!N)
        return 0;
 
    if (i > j || A[i] > N)
        return INT_MAX;
 
    if (dp[i][N])
        return dp[i][N];
 
    dp[i][N] = min(1 + minimumSubsetSize(A, i + 1, j,
                                         N - A[i]),
                   minimumSubsetSize(A, i + 1, j, N));
 
    return dp[i][N];
}
 
// Function to find the minimum
// number of palindromes that N
// can be expressed as a sum of
int minimumNoOfPalindromes(int N)
{
    // Getting the list of all palindromes upto N
    vector<int> palindromes = generatePalindromes(N);
 
    // Sorting the list of palindromes
    sort(palindromes.begin(), palindromes.end());
 
    // Initializing the DP table
    dp = vector<vector<long long> >(palindromes.size(),
                                    vector<long long>(N + 1, 0));
 
    // Returning the required value
    return minimumSubsetSize(palindromes, 0,
                             palindromes.size() - 1, N);
}
 
// Driver code
int main()
{
    int N = 65;
    cout << minimumNoOfPalindromes(N);
    return 0;
}

Python3




# Python3 implementation of above approach
 
# Declaring the DP table as global variable
dp = [[0 for i in range(1000)] for i in range(1000)]
 
# A utility for creating palindrome
def createPalindrome(input, isOdd):
 
    n = input
    palin = input
 
    # checks if number of digits is odd or even
    # if odd then neglect the last digit of input in
    # finding reverse as in case of odd number of
    # digits middle element occur once
    if (isOdd):
        n //= 10
 
    # Creates palindrome by just appending reverse
    # of number to itself
    while (n > 0):
        palin = palin * 10 + (n % 10)
        n //= 10
 
    return palin
 
# Function to generate palindromes
def generatePalindromes(N):
 
    palindromes = []
    number = 0
 
    # Run two times for odd and even length palindromes
    for j in range(2):
         
        # Creates palindrome numbers with first half as i.
        # Value of j decides whether we need an odd length
        # or even length palindrome.
        i = 1
        number = createPalindrome(i, j)
        while number <= N:
            number = createPalindrome(i, j)
            palindromes.append(number)
            i += 1
 
    return palindromes
 
# Function to find the minimum
# number of elements in a sorted
# array A[i..j] such that their sum is N
def minimumSubsetSize(A, i, j, N):
 
    if (not N):
        return 0
 
    if (i > j or A[i] > N):
        return 10**9
 
    if (dp[i][N]):
        return dp[i][N]
 
    dp[i][N] = min(1 + minimumSubsetSize(A, i + 1, j, N - A[i]),
                    minimumSubsetSize(A, i + 1, j, N))
 
    return dp[i][N]
 
# Function to find the minimum
# number of palindromes that N
# can be expressed as a sum of
def minimumNoOfPalindromes(N):
 
    # Getting the list of all palindromes upto N
    palindromes = generatePalindromes(N)
 
    # Sorting the list of palindromes
    palindromes = sorted(palindromes)
 
    # Returning the required value
    return minimumSubsetSize(palindromes, 0, len(palindromes) - 1, N)
 
# Driver code
N = 65
print(minimumNoOfPalindromes(N))
 
# This code is contributed by mohit kumar 29
Output: 
3

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!