Skip to content
Related Articles
Minimum number of moves to reach N starting from (1, 1)
• Last Updated : 08 Jun, 2021

Given an integer N and an infinite table where ith row and jth column contains the value i *j. The task is to find the minimum number of moves to reach the cell containing N starting from the cell (1, 1)
Note: From (i, j) only valid moves are (i + 1, j) and (i, j + 1)
Examples:

Input: N = 10
Output:
(1, 1) -> (2, 1) -> (2, 2) -> (2, 3) -> (2, 4) -> (2, 5)
Input: N = 7
Output:

Approach: Note that any cell (i, j) can be reached in i + j – 2 steps. Thus, only the pair (i, j) is required with i * j = N that minimizes i + j. It can be found out by finding all the possible pairs (i, j) and check them in O(√N). To do this, without loss of generality, it can be assumed that i ≤ j and i ≤ √N since N = i * j ≥ i2. So √N ≥ i2 i.e. √N ≥ i
Thus, iterate over all the possible values of i from 1 to √N and, among all the possible pairs (i, j), pick the lowest value of i + j – 2 and that is the required answer.
Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function to return the minimum number``// of moves required to reach the cell``// containing N starting from (1, 1)``int` `min_moves(``int` `n)``{``    ``// To store the required answer``    ``int` `ans = INT_MAX;` `    ``// For all possible values of divisors``    ``for` `(``int` `i = 1; i * i <= n; i++) {` `        ``// If i is a divisor of n``        ``if` `(n % i == 0) {` `            ``// Get the moves to reach n``            ``ans = min(ans, i + n / i - 2);``        ``}``    ``}` `    ``// Return the required answer``    ``return` `ans;``}` `// Driver code``int` `main()``{``    ``int` `n = 10;` `    ``cout << min_moves(n);` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``class` `GFG``{``    ` `// Function to return the minimum number``// of moves required to reach the cell``// containing N starting from (1, 1)``static` `int` `min_moves(``int` `n)``{``    ``// To store the required answer``    ``int` `ans = Integer.MAX_VALUE;` `    ``// For all possible values of divisors``    ``for` `(``int` `i = ``1``; i * i <= n; i++)``    ``{` `        ``// If i is a divisor of n``        ``if` `(n % i == ``0``)``        ``{` `            ``// Get the moves to reach n``            ``ans = Math.min(ans, i + n / i - ``2``);``        ``}``    ``}` `    ``// Return the required answer``    ``return` `ans;``}` `// Driver code``public` `static` `void` `main(String[] args)``{``    ``int` `n = ``10``;` `    ``System.out.println(min_moves(n));``}``}` `// This code is contributed by Code_Mech`

## Python3

 `# Python3 implementation of the approach``import` `sys` `from` `math ``import` `sqrt` `# Function to return the minimum number``# of moves required to reach the cell``# containing N starting from (1, 1)``def` `min_moves(n) :` `    ``# To store the required answer``    ``ans ``=` `sys.maxsize;` `    ``# For all possible values of divisors``    ``for` `i ``in` `range``(``1``, ``int``(sqrt(n)) ``+` `1``) :` `        ``# If i is a divisor of n``        ``if` `(n ``%` `i ``=``=` `0``) :` `            ``# Get the moves to reach n``            ``ans ``=` `min``(ans, i ``+` `n ``/``/` `i ``-` `2``);` `    ``# Return the required answer``    ``return` `ans;` `# Driver code``if` `__name__ ``=``=` `"__main__"` `:` `    ``n ``=` `10``;` `    ``print``(min_moves(n));` `# This code is contributed by AnkitRai01`

## C#

 `// C# implementation of the approach``using` `System;``    ` `class` `GFG``{``    ` `// Function to return the minimum number``// of moves required to reach the cell``// containing N starting from (1, 1)``static` `int` `min_moves(``int` `n)``{``    ``// To store the required answer``    ``int` `ans = ``int``.MaxValue;` `    ``// For all possible values of divisors``    ``for` `(``int` `i = 1; i * i <= n; i++)``    ``{` `        ``// If i is a divisor of n``        ``if` `(n % i == 0)``        ``{` `            ``// Get the moves to reach n``            ``ans = Math.Min(ans, i + n / i - 2);``        ``}``    ``}` `    ``// Return the required answer``    ``return` `ans;``}` `// Driver code``public` `static` `void` `Main(String[] args)``{``    ``int` `n = 10;` `    ``Console.WriteLine(min_moves(n));``}``}` `// This code is contributed by 29AjayKumar`

## Javascript

 ``
Output:
`5`

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes

My Personal Notes arrow_drop_up