Skip to content
Related Articles

Related Articles

Improve Article
Minimum number of moves to reach N starting from (1, 1)
  • Last Updated : 08 Jun, 2021

Given an integer N and an infinite table where ith row and jth column contains the value i *j. The task is to find the minimum number of moves to reach the cell containing N starting from the cell (1, 1)
Note: From (i, j) only valid moves are (i + 1, j) and (i, j + 1) 
Examples: 
 

Input: N = 10 
Output:
(1, 1) -> (2, 1) -> (2, 2) -> (2, 3) -> (2, 4) -> (2, 5)
Input: N = 7 
Output:
 

 

Approach: Note that any cell (i, j) can be reached in i + j – 2 steps. Thus, only the pair (i, j) is required with i * j = N that minimizes i + j. It can be found out by finding all the possible pairs (i, j) and check them in O(√N). To do this, without loss of generality, it can be assumed that i ≤ j and i ≤ √N since N = i * j ≥ i2. So √N ≥ i2 i.e. √N ≥ i
Thus, iterate over all the possible values of i from 1 to √N and, among all the possible pairs (i, j), pick the lowest value of i + j – 2 and that is the required answer.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum number
// of moves required to reach the cell
// containing N starting from (1, 1)
int min_moves(int n)
{
    // To store the required answer
    int ans = INT_MAX;
 
    // For all possible values of divisors
    for (int i = 1; i * i <= n; i++) {
 
        // If i is a divisor of n
        if (n % i == 0) {
 
            // Get the moves to reach n
            ans = min(ans, i + n / i - 2);
        }
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
int main()
{
    int n = 10;
 
    cout << min_moves(n);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
     
// Function to return the minimum number
// of moves required to reach the cell
// containing N starting from (1, 1)
static int min_moves(int n)
{
    // To store the required answer
    int ans = Integer.MAX_VALUE;
 
    // For all possible values of divisors
    for (int i = 1; i * i <= n; i++)
    {
 
        // If i is a divisor of n
        if (n % i == 0)
        {
 
            // Get the moves to reach n
            ans = Math.min(ans, i + n / i - 2);
        }
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
public static void main(String[] args)
{
    int n = 10;
 
    System.out.println(min_moves(n));
}
}
 
// This code is contributed by Code_Mech

Python3




# Python3 implementation of the approach
import sys
 
from math import sqrt
 
# Function to return the minimum number
# of moves required to reach the cell
# containing N starting from (1, 1)
def min_moves(n) :
 
    # To store the required answer
    ans = sys.maxsize;
 
    # For all possible values of divisors
    for i in range(1, int(sqrt(n)) + 1) :
 
        # If i is a divisor of n
        if (n % i == 0) :
 
            # Get the moves to reach n
            ans = min(ans, i + n // i - 2);
 
    # Return the required answer
    return ans;
 
# Driver code
if __name__ == "__main__" :
 
    n = 10;
 
    print(min_moves(n));
 
# This code is contributed by AnkitRai01

C#




// C# implementation of the approach
using System;
     
class GFG
{
     
// Function to return the minimum number
// of moves required to reach the cell
// containing N starting from (1, 1)
static int min_moves(int n)
{
    // To store the required answer
    int ans = int.MaxValue;
 
    // For all possible values of divisors
    for (int i = 1; i * i <= n; i++)
    {
 
        // If i is a divisor of n
        if (n % i == 0)
        {
 
            // Get the moves to reach n
            ans = Math.Min(ans, i + n / i - 2);
        }
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 10;
 
    Console.WriteLine(min_moves(n));
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
 
    // JavaScript implementation of the approach
     
    // Function to return the minimum number
    // of moves required to reach the cell
    // containing N starting from (1, 1)
    function min_moves(n)
    {
        // To store the required answer
        let ans = Number.MAX_VALUE;
 
        // For all possible values of divisors
        for (let i = 1; i * i <= n; i++)
        {
 
            // If i is a divisor of n
            if (n % i == 0)
            {
 
                // Get the moves to reach n
                ans = Math.min(ans, i + parseInt(n / i, 10) - 2);
            }
        }
 
        // Return the required answer
        return ans;
    }
     
    let n = 10;
   
    document.write(min_moves(n));
             
</script>
Output: 
5

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :