Skip to content
Related Articles

Related Articles

Improve Article

Minimum number of moves after which there exists a 3X3 coloured square

  • Last Updated : 07 Jun, 2021
Geek Week

Given an N * N board which is initially empty and a sequence of queries, each query consists of two integers X and Y where the cell (X, Y) is painted. The task is to print the number of the query after which there will be a 3 * 3 square in the board with all the cells painted. 
If there is no such square after processing all of the queries then print -1.
Examples: 
 

Input: N = 4, q = {{1, 1}, {1, 2}, {1, 3}, {2, 2}, {2, 3}, {1, 4}, {2, 4}, {3, 4}, {3, 2}, {3, 3}, {4, 1}} 
Output: 10 
After the 10th move, there exists a 3X3 square, from (1, 1) to (3, 3) (1-based indexing).
Input: N = 3, q = {(1, 1), {1, 2}, {1, 3}} 
Output: -1 
 

 

Approach: An important observation here is that every time we colour a square, it can be a part of the required square in 9 different ways (any cell of the 3 * 3 square) . For every possibility, check whether the current cell is a part of any square where all the 9 cells are painted. If the condition is satisfied print the number of queries processed so far else print -1 after all the queries have been processed.
Below is the implementation of the above approach:
 

CPP




// C++ implementation of the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns true
// if the coordinate is inside the grid
bool valid(int x, int y, int n)
{
    if (x < 1 || y < 1 || x > n || y > n)
        return false;
    return true;
}
 
// Function that returns the count of squares
// that are coloured in the 3X3 square
// with (cx, cy) being the top left corner
int count(int n, int cx, int cy,
          vector<vector<bool> >& board)
{
    int ct = 0;
 
    // Iterate through 3 rows
    for (int x = cx; x <= cx + 2; x++)
 
        // Iterate through 3 columns
        for (int y = cy; y <= cy + 2; y++)
 
            // Check if the current square
            // is valid and coloured
            if (valid(x, y, n))
                ct += board[x][y];
    return ct;
}
 
// Function that returns the query
// number after which the grid will
// have a 3X3 coloured square
int minimumMoveSquare(int n, int m,
                      vector<pair<int, int> > moves)
{
    int x, y;
    vector<vector<bool> > board(n + 1);
 
    // Initialize all squares to be uncoloured
    for (int i = 1; i <= n; i++)
        board[i].resize(n + 1, false);
    for (int i = 0; i < moves.size(); i++) {
        x = moves[i].first;
        y = moves[i].second;
 
        // Mark the current square as coloured
        board[x][y] = true;
 
        // Check if any of the 3X3 squares
        // which contains the current square
        // is fully coloured
        for (int cx = x - 2; cx <= x; cx++)
            for (int cy = y - 2; cy <= y; cy++)
                if (count(n, cx, cy, board) == 9)
                    return i + 1;
    }
 
    return -1;
}
 
// Driver code
int main()
{
    int n = 3;
    vector<pair<int, int> > moves = { { 1, 1 },
                                      { 1, 2 },
                                      { 1, 3 } };
    int m = moves.size();
 
    cout << minimumMoveSquare(n, m, moves);
 
    return 0;
}

Python3




# Python3 implementation of the approach
 
# Function that returns True
# if the coordinate is inside the grid
def valid(x, y, n):
 
    if (x < 1 or y < 1 or x > n or y > n):
        return False;
    return True;
 
 
# Function that returns the count of squares
# that are coloured in the 3X3 square
# with (cx, cy) being the top left corner
def count(n, cx, cy, board):
 
    ct = 0;
 
    # Iterate through 3 rows
    for x in range(cx, cx + 3):
 
        # Iterate through 3 columns
        for y in range(cy + 3):
 
            # Check if the current square
            # is valid and coloured
            if (valid(x, y, n)):
                ct += board[x][y];
    return ct;
 
# Function that returns the query
# number after which the grid will
# have a 3X3 coloured square
def minimumMoveSquare(n, m, moves):
 
    x = 0
    y = 0
    board=[[] for i in range(n + 1)]
 
    # Initialize all squares to be uncoloured
    for i in range(1, n + 1):
        board[i] = [False for i in range(n + 1)]
 
    for  i in range(len(moves)):
     
        x = moves[i][0];
        y = moves[i][1];
 
        # Mark the current square as coloured
        board[x][y] = True;
 
        # Check if any of the 3X3 squares
        # which contains the current square
        # is fully coloured
        for cx in range(x - 2, x + 1 ):
            for cy in range(y - 2, y + 1):   
                if (count(n, cx, cy, board) == 9):
                    return i + 1;
    return -1;
 
# Driver code
if __name__=='__main__':
 
    n = 3;
    moves = [[ 1, 1 ],[ 1, 2 ], [ 1, 3 ]]
    m = len(moves)
 
    print(minimumMoveSquare(n, m, moves))
 
    # This code is contributed by rutvik_56.

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function that returns true
// if the coordinate is inside the grid
function valid(x, y, n)
{
    if (x < 1 || y < 1 || x > n || y > n)
        return false;
    return true;
}
 
// Function that returns the count of squares
// that are coloured in the 3X3 square
// with (cx, cy) being the top left corner
function count(n, cx, cy, board)
{
    var ct = 0;
 
    // Iterate through 3 rows
    for (var x = cx; x <= cx + 2; x++)
 
        // Iterate through 3 columns
        for (var y = cy; y <= cy + 2; y++)
 
            // Check if the current square
            // is valid and coloured
            if (valid(x, y, n))
                ct += board[x][y];
    return ct;
}
 
// Function that returns the query
// number after which the grid will
// have a 3X3 coloured square
function minimumMoveSquare(n, m, moves)
{
    var x, y;
    var board = Array.from(Array(n+1), ()=>Array(n+1).fill(false));
 
    for (var i = 0; i < moves.length; i++) {
        x = moves[i][0];
        y = moves[i][1];
 
        // Mark the current square as coloured
        board[x][y] = true;
 
        // Check if any of the 3X3 squares
        // which contains the current square
        // is fully coloured
        for (var cx = x - 2; cx <= x; cx++)
            for (var cy = y - 2; cy <= y; cy++)
                if (count(n, cx, cy, board) == 9)
                    return i + 1;
    }
 
    return -1;
}
 
// Driver code
var n = 3;
var moves = [ [ 1, 1 ],
                                  [ 1, 2 ],
                                  [ 1, 3 ] ];
var m = moves.length;
document.write( minimumMoveSquare(n, m, moves));
 
// This code is contributed by famously.
</script>
Output: 
-1

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :