# Minimum number of jumps required to Sort the given Array in ascending order| Set-2

Given two arrays arr[] and jump[], each of length N, where jump[i] denotes the number of indices by which the ith element in the array arr[] can move forward, the task is to find the minimum number of jumps required such that the array is sorted in ascending order.

• All elements of the array arr[] are distinct.
• While jumping, array elements can overlap (i.e. lie on the same index).
• Array elements can move to the indices exceeding the size of the array

Examples:

Input: arr[] = {3, 1, 2}, jump[ ] = {1, 4, 5}
Output: 3
Explanation: Following sequence requires minimum number of jumps to sort the array in ascending order:
Jump 1: arr jumps by 1 ( = jump) index to index 1.
Jump 2: arr jumps by 1 ( = jump) index to index 2.
Jump 3: arr jumps by 1 ( = jump) index to index 3.
Therefore, the minimum number of operations required is 3.

Input: arr[] = {3, 2, 1}, jump[ ] = {1, 1, 1}
Output: 6
Explanation: Following sequence requires minimum number of jumps to sort the array in ascending order:
Jump 1: arr jumps by 1 ( = jump) index to the index 1.
Jump 2: arr jumps by 1 ( = jump) index to the index 2.
Jump 3: arr jumps by 1 ( = jump) index to the index 3.
Jump 4: arr jumps by 1 ( = jump) index to the index 2.
Jump 5: arr jumps by 1 ( = jump) index to the index 3.
Jump 6: arr jumps by 1 ( = jump) index to the index 4.
Therefore, the minimum number of operations required is 6.

Approach: The naive approach for solution is mentioned in the Set-1 of this problem. To determine the number of jumps for each element here the help of map is taken. For the current element determine the previous element which will be there in sorted order and then determine number of jumps required to put the current element after that one. Follow the steps mentioned below:

• Store the current position of each element in a map.
• Store the elements in sorted order in a set.
• Find the difference of position of the current element with its previous element in sorted order. Then find the number of jumps required by dividing the difference with the length of jump of current one.

Below is the implementation of the above approach.

## C++

 `// C++ program for the above approach` `#include ` `using` `namespace` `std;`   `// Function to return minimum required jumps` `int` `minJumps(` `    ``vector<``int``> arr, vector<``int``> jump, ``int` `N)` `{` `    ``int` `temp[N];` `    ``for` `(``int` `i = 0; i < N; i++)` `        ``temp[i] = arr[i];` `    ``sort(temp, temp + N);` `    ``unordered_map<``int``, ``int``> a;` `    ``for` `(``int` `i = 0; i < N; i++)` `    ``{` `        ``a[arr[i]] = i;` `    ``}` `    ``int` `ans = 0;` `    ``int` `x = 1, y = 0;` `    ``while` `(x < N)` `    ``{` `        ``if` `(a[temp[x]] <= a[temp[y]])` `        ``{` `            ``int` `jumps = ``ceil``((a[temp[y]] - a[temp[x]] + 1) / jump[a[temp[x]]]);`   `            ``ans += jumps;` `            ``a[temp[x]] = a[temp[x]] + jumps * jump[a[temp[x]]];` `        ``}` `        ``x++;` `        ``y++;` `    ``}` `    ``return` `ans;` `}`   `// Driver code` `int` `main()` `{` `    ``int` `N = 3;` `    ``vector<``int``> arr = {3, 2, 1};` `    ``vector<``int``> jump = {1, 1, 1};`   `    ``cout << (minJumps(arr, jump, N));` `    ``return` `0;` `}`   `// This code is contributed by lokeshpotta20.`

## Java

 `// Java code to implement the above approach` `import` `java.io.*;` `import` `java.util.*;`   `class` `GFG {` `    ``// Function to return minimum required jumps` `    ``public` `static` `int` `minJumps(` `        ``int` `arr[], ``int` `jump[], ``int` `N)` `    ``{` `        ``int` `temp[] = ``new` `int``[N];` `        ``for` `(``int` `i = ``0``; i < N; i++)` `            ``temp[i] = arr[i];` `        ``Arrays.sort(temp);` `        ``HashMap a = ``new` `HashMap<>();` `        ``for` `(``int` `i = ``0``; i < N; i++) {` `            ``a.put(arr[i], i);` `        ``}` `        ``int` `ans = ``0``;` `        ``int` `x = ``1``, y = ``0``;` `        ``while` `(x < N) {` `            ``if` `(a.get(temp[x]) <= a.get(temp[y])) {` `                ``int` `jumps = (``int``)Math.ceil(` `                    ``(``float``)(a.get(temp[y])` `                            ``- a.get(temp[x])` `                            ``+ ``1``)` `                    ``/ jump[a.get(temp[x])]);` `                ``ans += jumps;` `                ``a.put(temp[x],` `                      ``a.get(temp[x])` `                          ``+ jumps` `                                ``* jump[a.get(temp[x])]);` `            ``}` `            ``x++;` `            ``y++;` `        ``}` `        ``return` `ans;` `    ``}`   `    ``// Driver code` `    ``public` `static` `void` `main(String[] args)` `    ``{` `        ``int` `N = ``3``;` `        ``int` `arr[] = { ``3``, ``2``, ``1` `};` `        ``int` `jump[] = { ``1``, ``1``, ``1` `};`   `        ``System.out.println(minJumps(arr, jump, N));` `    ``}` `}`

## Python3

 `# Python program for the above approach` `import` `math as Math`   `# Function to return minimum required jumps` `def` `minJumps(arr, jump, N):` `    ``temp ``=` `[``0``] ``*` `N` `    ``for` `i ``in` `range``(N):` `        ``temp[i] ``=` `arr[i]` `    ``temp.sort()` `    ``a ``=` `{}` `    ``for` `i ``in` `range``(N):` `        ``a[arr[i]] ``=` `i`   `    ``ans ``=` `0` `    ``x ``=` `1` `    ``y ``=` `0` `    ``while` `x < N:` `        ``if` `a[temp[x]] <``=` `a[temp[y]]:` `            ``jumps ``=` `Math.ceil((a[temp[y]] ``-` `a[temp[x]] ``+` `1``) ``/` `jump[a[temp[x]]])`   `            ``ans ``+``=` `jumps` `            ``a[temp[x]] ``=` `a[temp[x]] ``+` `jumps ``*` `jump[a[temp[x]]]` `        ``x ``+``=` `1` `        ``y ``+``=` `1` `    ``return` `ans`   `# Driver code`   `N ``=` `3` `arr ``=` `[``3``, ``2``, ``1``]` `jump ``=` `[``1``, ``1``, ``1``]`   `print``(minJumps(arr, jump, N))`   `# This code is contributed by Saurabh Jaiswal`

## C#

 `// C# program for the above approach ` `using` `System;` `using` `System.Collections.Generic;`   `class` `GFG{` `    `  `// Function to return minimum required jumps` `public` `static` `int` `minJumps(``int``[] arr, ``int``[] jump, ``int` `N)` `{` `    ``int``[] temp = ``new` `int``[N];` `    ``for``(``int` `i = 0; i < N; i++)` `        ``temp[i] = arr[i];` `        `  `    ``Array.Sort(temp);` `    ``Dictionary<``int``, ``int``> a = ``new` `Dictionary<``int``, ``int``>();` `    `  `    ``for``(``int` `i = 0; i < N; i++) ` `    ``{` `        ``a[arr[i]] = i;` `    ``}` `    `  `    ``int` `ans = 0;` `    ``int` `x = 1, y = 0;` `    ``while` `(x < N) ` `    ``{` `        ``if` `(a[temp[x]] <= a[temp[y]])` `        ``{` `            ``int` `jumps = (``int``)Math.Ceiling(` `                ``(``float``)(a[temp[y]] - a[temp[x]] + 1) / ` `                   ``jump[a[temp[x]]]);` `                   `  `            ``ans += jumps;` `            ``a[temp[x]] = a[temp[x]] + jumps * jump[a[temp[x]]];` `        ``}` `        ``x++;` `        ``y++;` `    ``}` `    ``return` `ans;` `}`   `// Driver code` `public` `static` `void` `Main(``string``[] args)` `{` `    ``int` `N = 3;` `    ``int``[] arr = { 3, 2, 1 };` `    ``int``[] jump = { 1, 1, 1 };`   `    ``Console.Write(minJumps(arr, jump, N));` `}` `}`   `// This code is contributed by ukasp`

## Javascript

 ``

Output

`6`

Time Complexity: O(N * logN)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next